Comptes Rendus
Interfacial erosion: A three-dimensional numerical model
Comptes Rendus. Mécanique, Volume 338 (2010) no. 6, pp. 333-337.

The aim of this study was to develop a numerical model to simulate the surface erosion occurring at a fluid/soil interface subject to a flow process. We used a penalization procedure to compute flow around obstacles. A fictitious domain method allowed the use of fast and efficient finite volumes approximations on Cartesian meshes and avoided unstructured body-fitted meshes. The water/soil interface evolution was described with a Level Set function. Several numerical simulations confirmed the model's ability to predict the interfacial erosion of soils.

Published online:
DOI: 10.1016/j.crme.2010.06.001
Keywords: Soils, Erosion, Finite volume, Penalization, Level set, Interface, Fictitious domain

Frédéric Golay 1, 2; Damien Lachouette 1, 2; Stéphane Bonelli 2; Pierre Seppecher 1

1 IMATH, université du Sud Toulon-Var, avenue de l'université, 83957 La Garde, France
2 Unité ouvrages hydrauliques et hydrologie, Cemagref Aix-en-Provence, 3275 route de Cézanne CS 40061, 13182 Aix-en-Provence cedex 5, France
     author = {Fr\'ed\'eric Golay and Damien Lachouette and St\'ephane Bonelli and Pierre Seppecher},
     title = {Interfacial erosion: {A} three-dimensional numerical model},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {333--337},
     publisher = {Elsevier},
     volume = {338},
     number = {6},
     year = {2010},
     doi = {10.1016/j.crme.2010.06.001},
     language = {en},
AU  - Frédéric Golay
AU  - Damien Lachouette
AU  - Stéphane Bonelli
AU  - Pierre Seppecher
TI  - Interfacial erosion: A three-dimensional numerical model
JO  - Comptes Rendus. Mécanique
PY  - 2010
SP  - 333
EP  - 337
VL  - 338
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crme.2010.06.001
LA  - en
ID  - CRMECA_2010__338_6_333_0
ER  - 
%0 Journal Article
%A Frédéric Golay
%A Damien Lachouette
%A Stéphane Bonelli
%A Pierre Seppecher
%T Interfacial erosion: A three-dimensional numerical model
%J Comptes Rendus. Mécanique
%D 2010
%P 333-337
%V 338
%N 6
%I Elsevier
%R 10.1016/j.crme.2010.06.001
%G en
%F CRMECA_2010__338_6_333_0
Frédéric Golay; Damien Lachouette; Stéphane Bonelli; Pierre Seppecher. Interfacial erosion: A three-dimensional numerical model. Comptes Rendus. Mécanique, Volume 338 (2010) no. 6, pp. 333-337. doi : 10.1016/j.crme.2010.06.001.

[1] O. Brivois; S. Bonelli; R. Borghi Soil erosion in the boundary layer flow along a slope: A theoretical study, Eur. J. Mech. B Fluids, Volume 26 (2007), pp. 707-719

[2] S. Bonelli; O. Brivois The scaling law in the hole erosion test with a constant pressure drop, Internat. J. Numer. Methods Engrg., Volume 32 (2008), pp. 1573-1595

[3] D. Lachouette; F. Golay; S. Bonelli One-dimensional modeling of piping flow erosion, C. R. Mecanique, Volume 336 (2008), pp. 731-736

[4] P. Angot; C.-H. Bruneau; P. Fabrie A penalization method to take into account obstacles in incompressible viscous flows, Numer. Math., Volume 81 (1999), pp. 497-520

[5] M. Foster; R. Fell Assessing embankment dam filters that do not satisfy design criteria, J. Geotech. Geoenviron. Eng., Volume 125 (2001) no. 7, pp. 398-407

[6] C. Wan; R. Fell Investigation of rate of erosion of soils in embankment dams, J. Geotech. Geoenviron. Eng., Volume 130 (2004) no. 4, pp. 373-380

[7] P. Angot Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows, Math. Methods Appl. Sci., Volume 22 (1999), pp. 1395-1412

[8] C. Diaz-Goano; P.D. Minev; K. Nandakumar A fictitious domain/finite element method for particulate flows, J. Comput. Phys., Volume 192 (2003), pp. 105-123

[9] K. Khadra; P. Angot; S. Parneix; J.P. Caltagirone Fictitious domain approach for numerical modelling of Navier–Stokes equations, Internat. J. Numer. Methods Fluids, Volume 34 (2000), pp. 651-684

[10] S. Osher; J. Sethian Fronts propagating with curvature dependent speed: Algorithm for tracking material interface, J. Comput. Phys., Volume 39 (1981), pp. 201-225

[11] Y.C. Chang; T.Y. Hou; B. Merriman; S. Osher A level set formulation of Eulerian interface capturing methods for incompressible fluid flows, J. Comput. Phys., Volume 124 (1996), pp. 449-464

[12] E. Olson; G. Kreiss A conservative level set method for two phase flow, J. Comput. Phys., Volume 210 (2005), pp. 225-246

[13] M. Sussman; P. Smereka; S. Osher A level set approach for computing solutions to incompressible two-phase flows, J. Comput. Phys., Volume 114 (1994), pp. 146-159

[14] F. Chantalat; C.H. Bruneau; C. Galusinski; A. Iollo Level-set, penalization and Cartesian meshes: A paradigm for inverse problems and optimal design, J. Comput. Phys., Volume 228 (2009), pp. 6291-6315

[15] F.H. Harlow; J.E. Welsh Numerical calculation of time dependent viscous incompressible flow with free surface, Phys. Fluids, Volume 8 (1965) no. 12, pp. 2182-2189

[16] P.P. Patil; S. Tiwari Computation of flow past complex geometries using MAC algorithm on body-fitted coordinates, Eng. Appl. Comput. Fluids Mech., Volume 3 (2009) no. 1, pp. 15-27

[17] S. Vincent; J.P. Caltagirone A one-cell local multigrid method for solving unsteady incompressible multiphase flows, J. Comput. Phys., Volume 163 (2000), pp. 172-215

[18] C. Galusinski; P. Vigneaux On stability condition for bifluid flows with surface tension: Application to microfluidics, J. Comput. Phys., Volume 227 (2008), pp. 6140-6164

[19] G.S. Jiang; D. Peng Weighted ENO schemes for Hamilton–Jacobi equations, J. Sci. Comput., Volume 21 (2000) no. 6, pp. 2126-2143

[20] R. Fedkiw Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method, J. Comput. Phys., Volume 175 (2002), pp. 200-224

[21] F. Golay; P. Helluy Numerical schemes for low Mach wave breaking, Int. J. Comput. Fluid Dyn., Volume 21 (2007) no. 2, pp. 69-86

Cited by Sources:

Comments - Policy