Comptes Rendus
Theory of reconstructing the spatial distribution of the filtration coefficient in vascularized soft tissues: Exact and approximate inverse solutions
[Elements de theorie pour la reconstruction de la distribution spatiale du coefficient de filtration dans les tissus mous vascularisés : Une solution exacte et une solution inexacte mais simple]
Comptes Rendus. Mécanique, Volume 338 (2010) no. 7-8, pp. 412-423.

Nous formulons et résolvons un problème inverse poroelastique afin de reconstruire la distribution spatiale du coefficient de filtration pour un tissu mou vascularisé ; les déplacements utilisés ici sont enregistrés pendant la relaxation du tissu. Nous présentons deux solutions pour le problème inverse, toutes deux développées en utilisant une approche directe non-itérative. La première solution est une expression explicite simple, qui fait l'hypothèse que la pression interstitielle est spatiallement homogène. La deuxième solution ne se fonde pas sur cette hypothèse et requiert la résolution d'une équation de Poisson pour obtenir la distribution de pression. L'inversion obtenue ainsi est exacte dans la limite ou la percolation est négligeable. Nous présentons des reconstructions sur des données obtenues par simulations numériques pour valider et comparer ces deux approches. La solution explicite fournit des résultats précis dans des circonstances favorables. La deuxième approche est pratique pour simuler un chargement non homogène du tissu. Il apparaît que les deux approches sont quelque peu sensibles au bruit. Nos résultats suggérent néanmoins qu'il est possible d'effectuer l'imagerie du coefficient de filtration en utilisant cette approche. Dans le futur, nous souhaitons tester davantage ces méthodes en présence de bruit puis les valider sur des données expérimentales.

We formulate and solve an inverse poroelastic problem to reconstruct the spatial distribution of the filtration coefficient for soft vascularized tissue from a collection of displacement fields obtained during its relaxation. We present two solutions for the inverse problem, both developed using direct non-iterative approach. The first is a simple closed form approximate solution. It depends upon the approximation that the interstitial pressure is spatially homogeneous. The second solution relaxes this assumption. It requires the solution of a Poisson equation to reconstruct the pressure distribution. The inversion thus obtained is exact in the limit of negligible percolation. We present inversion results from computational experiments to validate and compare the two approaches. The closed form solution provides accurate results in favorable circumstances. The exact-pressure approach accommodates inhomogeneous loading easily. Both approaches are somewhat sensitive to noise. Our results suggest that it may be possible to image the filtration coefficient using this approach. Future work would include further test with noisy data and experimental validation.

Publié le :
DOI : 10.1016/j.crme.2010.07.003
Keywords: Biomechanics, Inverse poroelastic problem, Filtration coefficient
Mot clés : Biomécanique, Problème inverse poroelastique, Coefficient de filtration

Ricardo Leiderman 1 ; Assad A. Oberai 2 ; Paul E. Barbone 3

1 Computer Science Department, Fluminense Federal University (UFF), São Domingos Niterói, Brazil
2 Mechanical, Aerospace & Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
3 Mechanical Engineering, Boston University, Boston, MA, USA
@article{CRMECA_2010__338_7-8_412_0,
     author = {Ricardo Leiderman and Assad A. Oberai and Paul E. Barbone},
     title = {Theory of reconstructing the spatial distribution of the filtration coefficient in vascularized soft tissues: {Exact} and approximate inverse solutions},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {412--423},
     publisher = {Elsevier},
     volume = {338},
     number = {7-8},
     year = {2010},
     doi = {10.1016/j.crme.2010.07.003},
     language = {en},
}
TY  - JOUR
AU  - Ricardo Leiderman
AU  - Assad A. Oberai
AU  - Paul E. Barbone
TI  - Theory of reconstructing the spatial distribution of the filtration coefficient in vascularized soft tissues: Exact and approximate inverse solutions
JO  - Comptes Rendus. Mécanique
PY  - 2010
SP  - 412
EP  - 423
VL  - 338
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crme.2010.07.003
LA  - en
ID  - CRMECA_2010__338_7-8_412_0
ER  - 
%0 Journal Article
%A Ricardo Leiderman
%A Assad A. Oberai
%A Paul E. Barbone
%T Theory of reconstructing the spatial distribution of the filtration coefficient in vascularized soft tissues: Exact and approximate inverse solutions
%J Comptes Rendus. Mécanique
%D 2010
%P 412-423
%V 338
%N 7-8
%I Elsevier
%R 10.1016/j.crme.2010.07.003
%G en
%F CRMECA_2010__338_7-8_412_0
Ricardo Leiderman; Assad A. Oberai; Paul E. Barbone. Theory of reconstructing the spatial distribution of the filtration coefficient in vascularized soft tissues: Exact and approximate inverse solutions. Comptes Rendus. Mécanique, Volume 338 (2010) no. 7-8, pp. 412-423. doi : 10.1016/j.crme.2010.07.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.07.003/

[1] M. Sridhar; J. Liu; M.F. Insana Elasticity imaging of polymeric media, Journal of Biomechanical Engineering, Volume 129 (2007) no. 2 | DOI

[2] M.F. Insana, M. Oelse, Advanced ultrasonic imaging techniques for breast cancer research, in: J.S. Suri, R.M. Rangayyan, S. Laxminarayan (Eds.), Emerging Technologies in Breast Imaging and Mammography, American Scientific Publishers, Valencia, CA, 2006.

[3] V.C. Mow; S.C. Kuei; W.M. Lai; C.G. Armstrong Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments, Journal of Biomechanical Engineering, Volume 102 (1980), pp. 73-84

[4] C.G. Armstrong; W.M. Lai; V.C. Mow An analysis of the unconfined compression of articular cartilage, Journal of Biomechanical Engineering, Volume 106 (1984), pp. 165-173

[5] J. Ophir; I. Cespedes; H. Ponnekanti; Y. Yazdi; X. Li Elastography – a quantitative method for imaging the elasticity of biological tissues, Ultrasonic Imaging, Volume 13 (1991), pp. 111-134

[6] R. Muthupillai; D.J. Lomas; P.J. Rossman; J.F. Greenleaf; A. Manduca; R.L. Ehman Magnetic resonance elastography by direct visualization of propagating acoustic strain waves, Science, Volume 269 (1995), pp. 1854-1857

[7] J. Ophir; S.K. Alam; B. Garra; F. Kallel; E. Konofagou; T. Krouskop; T. Varghese Elastography: Ultrasonic estimation and imaging of the elastic properties of tissues, Proceedings of the Institution of Mechanical Engineers Part H – Journal of Engineering in Medicine, Volume 213 (1999) no. H3, pp. 203-233

[8] L. Gao; K.J. Parker; R.M. Lerner; S.F. Levinson Imaging of the elastic properties of tissue – A review, Ultrasound in Medicine and Biology, Volume 22 (1996) no. 8, pp. 959-977

[9] K.J. Parker; L. Gao; R.M. Lerner; S.F. Levinson Techniques for elastic imaging: a review, Engineering in Medicine and Biology Magazine, IEEE, Volume 15 (1996) no. 6, pp. 52-59

[10] J.F. Greenleaf; M. Fatemi; M. Insana Selected methods for imaging elastic properties of biological tissues, Annual Reviews in Biomedical Engineering, Volume 5 (2003) no. 1, pp. 57-78

[11] K.J. Parker; L.S. Taylor; S. Gracewski; D.J. Rubens A unified view of imaging the elastic properties of tissue, The Journal of the Acoustical Society of America, Volume 117 (2005), p. 2705

[12] J.C. Bamber; P.E. Barbone; N.L. Bush; D.O. Cosgrove; M.M. Doyley; F.G. Fuechsel; P.M. Meaney; N.R. Miller; T. Shiina; F. Tranquart Progress in freehand elastography of the breast, IEICE Transactions on Information and Systems, Volume E85D (2002) no. 1, pp. 5-14

[13] M.F. Insana; J.C. Bamber Special issue on tissue motion and elasticity imaging, Physics in Medicine and Biology, Volume 45 (2000) no. 6, pp. 1409-1714

[14] G.P. Berry; J.C. Bamber; C.G. Armstrong; N.R. Miller; P.E. Barbone Towards an acoustic model-based poroelastic imaging method: I. Theoretical foundation, Ultrasound in Medicine and Biology, Volume 32 (2006) no. 4, pp. 547-567

[15] G.P. Berry; J.C. Bamber; C.G. Armstrong; N.R. Miller; P.E. Barbone Towards an acoustic model-based poroelastic imaging method: II. Experimental investigation, Ultrasound in Medicine and Biology, Volume 32 (2006) no. 12, pp. 1869-1885

[16] Gearóid P. Berry; Jeffrey C. Bamber; Peter S. Mortimer; Nigel L. Bush; Naomi R. Miller; Paul E. Barbone The spatio-temporal strain response of oedematous and non-oedematous tissue to sustained compression in vivo, Ultrasound in Medicine and Biology, Volume 34 (2008) no. 4, pp. 617-629

[17] P.A. Netti; L.T. Baxter; Y. Boucher; R. Skalak; R.K. Jain Macro- and microscopic fluid transport in living tissues: application to solid tumors, AIChE Journal of Bioengineering, Food, and Natural Products, Volume 43 (1997) no. 3, pp. 818-834

[18] Ricardo Leiderman; Paul E. Barbone; Assad A. Oberai; Jeffrey C. Bamber Coupling between elastic strain and interstitial fluid flow: Ramifications for poroelastic imaging, Physics in Medicine and Biology, Volume 51 (2006), pp. 6291-6313

[19] P.A. Netti; L.T. Baxter; Y. Boucher; R. Skalak; R.K. Jain Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery, Cancer Research, Volume 55 (1995) no. 22, pp. 5451-5458

[20] E.M. Sevick; R.K. Jain Measurement of capillary filtration coefficient in a solid tumor, Cancer Research, Volume 51 (1991) no. 4, pp. 1352-1355

[21] E. Kreyszig Introductory Functional Analysis with Applications, John Wiley & Sons, 1978

[22] T.J.R. Hughes The Finite Element Method – Linear Static and Dynamic Finite Element Analysis, Dover Publications, Mineola, New York, 2000

Cité par Sources :

Commentaires - Politique