[Reconstruction des propriétés viscoélastiques des tissus utilisant des mesures d'élastographie par résonance magnétique]
L'objet de cette étude est l'identification des propriétés viscoélastiques « ambiantes » d'un tissu mou par un processus d'optimisation reposant sur des mesures fournies par élastographie par résonance magnétique (IRM). Dans cette approche, les déplacements triaxiaux au sein du tissu (mesurés par le scanner IRM) dans un sous domaine d'intérêt, sans hétérogénéités majeures, sont séparés en (i) données de frontière utilisées pour formuler le problème (Dirichlet) direct, et (ii) mesures internes constituant les « données » pour le problème inverse (de caractérisation des matériaux). Pour une performance accrue de l'algorithme de minimisation, les sensibilités matériaux de la fonction coût considérée sont calculées semi-analytiquement par une formulation d'intégrales de frontières aboutissant à des formules de sensibilités reposant sur des champs « direct » et adjoint. Les résultats numériques, obtenus en utilisant des paramètres pertinents pour l'élastographie par résonance magnétique, montrent que l'approche proposée peut constituer un moyen efficace pour une caractérisation multi-fréquentielle exhaustive de la viscoélasticité « ambiante » des tissus mous.
This study is concerned with an optimization-based approach to the identification of “background” viscoelastic properties of soft tissues from magnetic resonance (MR) elastography-type measurements. In this approach, the triaxial tissue displacements, captured by the MR scanner over a suitable subdomain that is free of major heterogeneities, are split into (i) a boundary subset that is used to formulate the forward (Dirichlet) problem, and (ii) an internal subset, employed as “the data” for the inverse (material characterization) problem. For an elevated performance of the minimization scheme, material sensitivities of the featured cost functional are computed semi-analytically via a boundary-integral formulation, resulting in alternative “direct” and adjoint-field sensitivity formulas. The numerical results, obtained assuming input parameters that are relevant to MR elastography, indicate that the proposed approach may provide an effective means for comprehensive multi-frequency characterization of the “background” viscoelasticity of soft tissues.
Mot clés : Élastographie par résonance magnétique, Caractérisation de tissus viscoélastiques, Optimisation, Sensibilité matérielle, Champ adjoint
Huina Yuan 1 ; Bojan B. Guzina 1
@article{CRMECA_2010__338_7-8_480_0, author = {Huina Yuan and Bojan B. Guzina}, title = {Reconstruction of viscoelastic tissue properties from {MR} elastography-type measurements}, journal = {Comptes Rendus. M\'ecanique}, pages = {480--488}, publisher = {Elsevier}, volume = {338}, number = {7-8}, year = {2010}, doi = {10.1016/j.crme.2010.07.005}, language = {en}, }
TY - JOUR AU - Huina Yuan AU - Bojan B. Guzina TI - Reconstruction of viscoelastic tissue properties from MR elastography-type measurements JO - Comptes Rendus. Mécanique PY - 2010 SP - 480 EP - 488 VL - 338 IS - 7-8 PB - Elsevier DO - 10.1016/j.crme.2010.07.005 LA - en ID - CRMECA_2010__338_7-8_480_0 ER -
Huina Yuan; Bojan B. Guzina. Reconstruction of viscoelastic tissue properties from MR elastography-type measurements. Comptes Rendus. Mécanique, Volume 338 (2010) no. 7-8, pp. 480-488. doi : 10.1016/j.crme.2010.07.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.07.005/
[1] Magnetic resonance elastography by direct visualization of propagating acoustic strain waves, Science, Volume 269 (1995), pp. 1854-1857
[2] Magnetic resonance imaging of transverse acoustic strain waves, Magn. Reson. Med. (1996), pp. 266-274
[3] Magnetic resonance elastography: non-invasive mapping of tissue elasticity, Medical Imaging Anal. (2001), pp. 237-254
[4] High-resolution tensor MR elastography for breast tumour detection, Phys. Med. Biol., Volume 45 (2000), pp. 1649-1664
[5] MR elastography of breast cancer: preliminary results, Amer. J. Roentgenol., Volume 178 (2002), pp. 1411-1417
[6] Viscoelastic shear properties of in vivo breast lesions measured by MR elastography, Magn. Reson. Imaging, Volume 23 (2005), pp. 159-165
[7] Liver fibrosis: non-invasive assessment with MR elastography, NMR Biomed., Volume 19 (2006), pp. 173-179
[8] MR elastography of liver tumors: preliminary results, Amer. J. Roentgenol., Volume 190 (2008), pp. 1534-1540
[9] In vivo brain viscoelastic properties measured by magnetic resonance elastography, NMR Biomed., Volume 21 (2008), pp. 755-764
[10] Topological derivative for the inverse scattering of elastic waves, Quart. J. Mech. Appl. Math., Volume 57 (2004), pp. 161-179
[11] Topological derivative for the inverse scattering of elastic waves, Int. J. Num. Meth. Eng., Volume 57 (2004), pp. 161-179
[12] Topological sensitivity for 3D elastodynamics and acoustic inverse scattering in the time domain, Comp. Meth. Appl. Mech. Eng., Volume 195 (2006), pp. 5239-5254
[13] On the small-defect perturbation and sampling of heterogeneous solids, Acta Mechanica, Volume 205 (2009), pp. 51-75
[14] From imaging to material identification: a generalized concept of topological sensitivity, J. Mech. Phys. Solids, Volume 55 (2007), pp. 245-279
[15] Generalized topological derivative for the Navier equation and inverse scattering in the time domain, Comp. Meth. Appl. Mech. Eng., Volume 197 (2007), pp. 4467-4484
[16] Elastic-wave identification of penetrable obstacles using shape-material sensitivity framework, J. Comput. Phys., Volume 228 (2009), pp. 294-311
[17] Creep and Relaxation of Nonlinear Viscoelastic Materials, Dover, New York, 1989
[18] Numerical Optimization, Springer, New York, 1999
[19] Boundary Integral Equation Methods for Solids and Fluids, John Wiley & Sons, 1999
[20] Seismic soil–structure interaction analysis by direct boundary element methods, Int. J. Solids Struct., Volume 36 (1999), pp. 4743-4766
[21] The Poisson's loss factor of solid viscoelastic materials, J. Sound Vib., Volume 306 (2007), pp. 790-802
[22] Line search algorithms with guaranteed sufficient decrease, ACM Trans. Math. Software, Volume 20 (1994), pp. 294-308
Cité par Sources :
Commentaires - Politique