Comptes Rendus
Reconstruction of viscoelastic tissue properties from MR elastography-type measurements
Comptes Rendus. Mécanique, Inverse problems, Volume 338 (2010) no. 7-8, pp. 480-488.

This study is concerned with an optimization-based approach to the identification of “background” viscoelastic properties of soft tissues from magnetic resonance (MR) elastography-type measurements. In this approach, the triaxial tissue displacements, captured by the MR scanner over a suitable subdomain that is free of major heterogeneities, are split into (i) a boundary subset that is used to formulate the forward (Dirichlet) problem, and (ii) an internal subset, employed as “the data” for the inverse (material characterization) problem. For an elevated performance of the minimization scheme, material sensitivities of the featured cost functional are computed semi-analytically via a boundary-integral formulation, resulting in alternative “direct” and adjoint-field sensitivity formulas. The numerical results, obtained assuming input parameters that are relevant to MR elastography, indicate that the proposed approach may provide an effective means for comprehensive multi-frequency characterization of the “background” viscoelasticity of soft tissues.

L'objet de cette étude est l'identification des propriétés viscoélastiques « ambiantes » d'un tissu mou par un processus d'optimisation reposant sur des mesures fournies par élastographie par résonance magnétique (IRM). Dans cette approche, les déplacements triaxiaux au sein du tissu (mesurés par le scanner IRM) dans un sous domaine d'intérêt, sans hétérogénéités majeures, sont séparés en (i) données de frontière utilisées pour formuler le problème (Dirichlet) direct, et (ii) mesures internes constituant les « données » pour le problème inverse (de caractérisation des matériaux). Pour une performance accrue de l'algorithme de minimisation, les sensibilités matériaux de la fonction coût considérée sont calculées semi-analytiquement par une formulation d'intégrales de frontières aboutissant à des formules de sensibilités reposant sur des champs « direct » et adjoint. Les résultats numériques, obtenus en utilisant des paramètres pertinents pour l'élastographie par résonance magnétique, montrent que l'approche proposée peut constituer un moyen efficace pour une caractérisation multi-fréquentielle exhaustive de la viscoélasticité « ambiante » des tissus mous.

Published online:
DOI: 10.1016/j.crme.2010.07.005
Keywords: MR elastography, Viscoelastic tissue characterization, Optimization, Material sensitivities, Adjoint field
Mots-clés : Élastographie par résonance magnétique, Caractérisation de tissus viscoélastiques, Optimisation, Sensibilité matérielle, Champ adjoint

Huina Yuan 1; Bojan B. Guzina 1

1 Department of Civil Engineering, University of Minnesota, Minneapolis, MN 55455, USA
@article{CRMECA_2010__338_7-8_480_0,
     author = {Huina Yuan and Bojan B. Guzina},
     title = {Reconstruction of viscoelastic tissue properties from {MR} elastography-type measurements},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {480--488},
     publisher = {Elsevier},
     volume = {338},
     number = {7-8},
     year = {2010},
     doi = {10.1016/j.crme.2010.07.005},
     language = {en},
}
TY  - JOUR
AU  - Huina Yuan
AU  - Bojan B. Guzina
TI  - Reconstruction of viscoelastic tissue properties from MR elastography-type measurements
JO  - Comptes Rendus. Mécanique
PY  - 2010
SP  - 480
EP  - 488
VL  - 338
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crme.2010.07.005
LA  - en
ID  - CRMECA_2010__338_7-8_480_0
ER  - 
%0 Journal Article
%A Huina Yuan
%A Bojan B. Guzina
%T Reconstruction of viscoelastic tissue properties from MR elastography-type measurements
%J Comptes Rendus. Mécanique
%D 2010
%P 480-488
%V 338
%N 7-8
%I Elsevier
%R 10.1016/j.crme.2010.07.005
%G en
%F CRMECA_2010__338_7-8_480_0
Huina Yuan; Bojan B. Guzina. Reconstruction of viscoelastic tissue properties from MR elastography-type measurements. Comptes Rendus. Mécanique, Inverse problems, Volume 338 (2010) no. 7-8, pp. 480-488. doi : 10.1016/j.crme.2010.07.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.07.005/

[1] R. Muthupillai; P.J. Rossman; D.J. Lomas; J.F. Greenleaf; S.J. Riederer; R.L. Ehman Magnetic resonance elastography by direct visualization of propagating acoustic strain waves, Science, Volume 269 (1995), pp. 1854-1857

[2] R. Muthupillai; P.J. Rossman; D.J. Lomas; J.F. Greenleaf; S.J. Riederer; R.L. Ehman Magnetic resonance imaging of transverse acoustic strain waves, Magn. Reson. Med. (1996), pp. 266-274

[3] A. Manduca; T.E. Oliphant; M.A. Dresner; J.L. Manhowald; S.A. Kruse; E. Ameromin; J.P. Felmlee; J.F. Greenleaf; R.L. Ehman Magnetic resonance elastography: non-invasive mapping of tissue elasticity, Medical Imaging Anal. (2001), pp. 237-254

[4] R. Sinkus; J. Lorenzen; D. Schrader; M. Lorenzen; M. Dargatz; D. Holz High-resolution tensor MR elastography for breast tumour detection, Phys. Med. Biol., Volume 45 (2000), pp. 1649-1664

[5] A.L. McKnight; J.L. Kugel; P.J. Rossman; A. Manduca; L.C. Hartmann; R.L. Ehman MR elastography of breast cancer: preliminary results, Amer. J. Roentgenol., Volume 178 (2002), pp. 1411-1417

[6] R. Sinkus; M. Tanter; T. Xydeas; S. Catheline; J. Bercoff; M. Fink Viscoelastic shear properties of in vivo breast lesions measured by MR elastography, Magn. Reson. Imaging, Volume 23 (2005), pp. 159-165

[7] L. Huwart; F. Peeters; R. Sinkus; L. Annet; N. Salameh; L.C. ter Beek; Y. Horsmans; B.E. Van Beers Liver fibrosis: non-invasive assessment with MR elastography, NMR Biomed., Volume 19 (2006), pp. 173-179

[8] S.K. Venkatesh; M. Yin; J.F. Glockner; N. Takahashi; P.A. Araoz; J.A. Talwalkar; R.L. Ehman MR elastography of liver tumors: preliminary results, Amer. J. Roentgenol., Volume 190 (2008), pp. 1534-1540

[9] M.A. Green; L.E. Bilston; R. Sinkus In vivo brain viscoelastic properties measured by magnetic resonance elastography, NMR Biomed., Volume 21 (2008), pp. 755-764

[10] B.B. Guzina; M. Bonnet Topological derivative for the inverse scattering of elastic waves, Quart. J. Mech. Appl. Math., Volume 57 (2004), pp. 161-179

[11] M. Bonnet; B.B. Guzina Topological derivative for the inverse scattering of elastic waves, Int. J. Num. Meth. Eng., Volume 57 (2004), pp. 161-179

[12] M. Bonnet Topological sensitivity for 3D elastodynamics and acoustic inverse scattering in the time domain, Comp. Meth. Appl. Mech. Eng., Volume 195 (2006), pp. 5239-5254

[13] B.B. Guzina; H. Yuan On the small-defect perturbation and sampling of heterogeneous solids, Acta Mechanica, Volume 205 (2009), pp. 51-75

[14] B.B. Guzina; I. Chikichev From imaging to material identification: a generalized concept of topological sensitivity, J. Mech. Phys. Solids, Volume 55 (2007), pp. 245-279

[15] I. Chikichev; B.B. Guzina Generalized topological derivative for the Navier equation and inverse scattering in the time domain, Comp. Meth. Appl. Mech. Eng., Volume 197 (2007), pp. 4467-4484

[16] M. Bonnet; B.B. Guzina Elastic-wave identification of penetrable obstacles using shape-material sensitivity framework, J. Comput. Phys., Volume 228 (2009), pp. 294-311

[17] W.N. Findley; J.S. Lai; K. Onaran Creep and Relaxation of Nonlinear Viscoelastic Materials, Dover, New York, 1989

[18] J. Nocedal; S.J. Wright Numerical Optimization, Springer, New York, 1999

[19] M. Bonnet Boundary Integral Equation Methods for Solids and Fluids, John Wiley & Sons, 1999

[20] R.Y.S. Pak; B.B. Guzina Seismic soil–structure interaction analysis by direct boundary element methods, Int. J. Solids Struct., Volume 36 (1999), pp. 4743-4766

[21] T. Pritz The Poisson's loss factor of solid viscoelastic materials, J. Sound Vib., Volume 306 (2007), pp. 790-802

[22] J.J. More; D.J. Thuente Line search algorithms with guaranteed sufficient decrease, ACM Trans. Math. Software, Volume 20 (1994), pp. 294-308

Cited by Sources:

Comments - Policy