Comptes Rendus
Elasticity reconstruction: Beyond the assumption of local homogeneity
Comptes Rendus. Mécanique, Inverse problems, Volume 338 (2010) no. 7-8, pp. 474-479.

Elasticity imaging is a novel domain which is currently gaining significant interest in the medical field. Most inversion techniques are based on the homogeneity assumption, i.e. the local spatial derivatives of the complex-shear modulus are ignored. This analysis presents an analytic approach in order to overcome this limitation, i.e. first order spatial derivatives of the real-part of the complex-shear modulus are taken into account. Resulting distributions in a gauged breast lesion phantom agree very well with the theoretical expectations. An in-vivo example of a cholangiocarcinoma demonstrates that the new approach provides maps of the viscoelastic properties which agree much better with expectations from anatomy.

Publié le :
DOI : 10.1016/j.crme.2010.07.014
Mots-clés : Biomechanics, Elasticity imaging, Inverse problems, Complex-shear modulus, Medical imaging

Ralph Sinkus 1 ; Jean-Luc Daire 2 ; Bernard E. Van Beers 2 ; Valerie Vilgrain 2

1 Institut Langevin, ESPCI, 10, rue Vauquelin, 75005 Paris, France
2 Centre de recherches biomédicales Bichat-Beaujon, 75018 Paris, France
@article{CRMECA_2010__338_7-8_474_0,
     author = {Ralph Sinkus and Jean-Luc Daire and Bernard E. Van Beers and Valerie Vilgrain},
     title = {Elasticity reconstruction: {Beyond} the assumption of local homogeneity},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {474--479},
     publisher = {Elsevier},
     volume = {338},
     number = {7-8},
     year = {2010},
     doi = {10.1016/j.crme.2010.07.014},
     language = {en},
}
TY  - JOUR
AU  - Ralph Sinkus
AU  - Jean-Luc Daire
AU  - Bernard E. Van Beers
AU  - Valerie Vilgrain
TI  - Elasticity reconstruction: Beyond the assumption of local homogeneity
JO  - Comptes Rendus. Mécanique
PY  - 2010
SP  - 474
EP  - 479
VL  - 338
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crme.2010.07.014
LA  - en
ID  - CRMECA_2010__338_7-8_474_0
ER  - 
%0 Journal Article
%A Ralph Sinkus
%A Jean-Luc Daire
%A Bernard E. Van Beers
%A Valerie Vilgrain
%T Elasticity reconstruction: Beyond the assumption of local homogeneity
%J Comptes Rendus. Mécanique
%D 2010
%P 474-479
%V 338
%N 7-8
%I Elsevier
%R 10.1016/j.crme.2010.07.014
%G en
%F CRMECA_2010__338_7-8_474_0
Ralph Sinkus; Jean-Luc Daire; Bernard E. Van Beers; Valerie Vilgrain. Elasticity reconstruction: Beyond the assumption of local homogeneity. Comptes Rendus. Mécanique, Inverse problems, Volume 338 (2010) no. 7-8, pp. 474-479. doi : 10.1016/j.crme.2010.07.014. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.07.014/

[1] L. Huwart; F. Peeters; R. Sinkus; L. Annet; N. Salameh; L.C. ter Beek; Y. Horsmans; B.E. Van Beers NMR Biomed., 19 ( 2006 April ) no. 2, pp. 173-179

[2] O. Rouvière; M. Yin; M.A. Dresner; P.J. Rossman; L.J. Burgart; J.L. Fidler; R.L. Ehman Radiology, 240 ( 2006 August ) no. 2, pp. 440-448

[3] L. Huwart; C. Sempoux; E. Vicaut; N. Salameh; L. Annet; E. Danse; F. Peeters; L.C. ter Beek; J. Rahier; R. Sinkus; Y. Horsmans; B.E. Van Beers Gastroenterology, 135 ( 2008 July ) no. 1, pp. 32-40 (Epub 2008 April 4)

[4] A.L. McKnight; J.L. Kugel; P.J. Rossman; A. Manduca; L.C. Hartmann; R.L. Ehman AJR Am. J. Roentgenol., 178 ( 2002 June ) no. 6, pp. 1411-1417

[5] R. Sinkus; K. Siegmann; T. Xydeas; M. Tanter; C. Claussen; M. Fink Magn. Reson. Med., 58 ( 2007 December ) no. 6, pp. 1135-1144

[6] K.C. Siegmann; T. Xydeas; R. Sinkus; B. Kraemer; U. Vogel; C.D. Claussen Eur. Radiol., 20 ( 2010 February ) no. 2, pp. 318-325

[7] I. Sack; B. Beierbach; J. Wuerfel; D. Klatt; U. Hamhaber; S. Papazoglou; P. Martus; J. Braun Neuroimage, 46 ( 2009 July 1 ) no. 3, pp. 652-657

[8] E. Diguet, B. Larrat, R. Sinkus, M. Fink, in: Proceedings of International Tissue Elasticity Conference, 2009, The Netherlands, #059.

[9] J. Wuerfel; F. Paul; B. Beierbach; U. Hamhaber; D. Klatt; S. Papazoglou; F. Zipp; P. Martus; J. Braun; I. Sack Neuroimage, 49 ( 2010 February 1 ) no. 3, pp. 2520-2525

[10] R. Sinkus; J. Lorenzen; D. Schrader; M. Lorenzen; M. Dargatz; D. Holz Phys. Med. Biol., 45 ( 2000 June ) no. 6, pp. 1649-1664

[11] T.E. Oliphant; A. Manduca; R.L. Ehman; J.F. Greenleaf Magn. Reson. Med., 45 ( 2001 February ) no. 2, pp. 299-310

[12] S. Papazoglou; U. Hamhaber; J. Braun; I. Sack Phys. Med. Biol., 53 ( 2008 June 21 ) no. 12, pp. 3147-3158

[13] F. Duck Physical Properties of Tissue, Academic Press, London, 1990

[14] L. Landau; E. Lifschitz Theory of Elasticity, Butterworth–Heinemann, 1986

[15] R. Sinkus; M. Tanter; S. Catheline; J. Lorenzen; C. Kuhl; E. Sondermann; M. Fink Magn. Reson. Med., 53 ( 2005 February ) no. 2, pp. 372-387

[16] R. Sinkus; M. Tanter; T. Xydeas; S. Catheline; J. Bercoff; M. Fink Magn. Reson. Imaging, 23 ( 2005 February ) no. 2, pp. 159-165

[17] E.L. Madsen; M.A. Hobson; G.R. Frank et al. Ultrasound Med. Biol., 32 (2006) no. 6, pp. 857-874

[18] R. Sinkus; K. Siegmann; T. Xydeas; M. Tanter; C. Claussen; M. Fink Magn. Reson. Med., 58 ( 2007 December ) no. 6, pp. 1135-1144

[19] E.V. Houten; J. Weaver; M. Miga; F. Kennedy; K. Paulsen Med. Phys., 27 (2000) no. 1, pp. 101-107

[20] A. Manduca; D.S. Lake; S.A. Kruse; R.L. Ehman Med. Image Anal., 7 ( 2003 December ) no. 4, pp. 465-473

  • Matthew Ragoza; Kayhan Batmanghelich Physics-Informed Neural Networks for Tissue Elasticity Reconstruction in Magnetic Resonance Elastography, Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, Volume 14229 (2023), p. 333 | DOI:10.1007/978-3-031-43999-5_32
  • Hongliang Li; Guillaume Flé; Manish Bhatt; Zhen Qu; Sajad Ghazavi; Ladan Yazdani; Guillaume Bosio; Iman Rafati; Guy Cloutier Viscoelasticity Imaging of Biological Tissues and Single Cells Using Shear Wave Propagation, Frontiers in Physics, Volume 9 (2021) | DOI:10.3389/fphy.2021.666192
  • Andrea Mendizabal; Eleonora Tagliabue; Tristan Hoellinger; Jean-Nicolas Brunet; Sergei Nikolaev; Stéphane Cotin Data-Driven Simulation for Augmented Surgery, Developments and Novel Approaches in Biomechanics and Metamaterials, Volume 132 (2020), p. 71 | DOI:10.1007/978-3-030-50464-9_5
  • Eric Barnhill; Penny J. Davies; Cemre Ariyurek; Andreas Fehlner; Jürgen Braun; Ingolf Sack Heterogeneous Multifrequency Direct Inversion (HMDI) for magnetic resonance elastography with application to a clinical brain exam, Medical Image Analysis, Volume 46 (2018), p. 180 | DOI:10.1016/j.media.2018.03.003
  • Lynne E. Bilston Soft tissue rheology and its implications for elastography: Challenges and opportunities, NMR in Biomedicine, Volume 31 (2018) no. 10 | DOI:10.1002/nbm.3832
  • L Hollis; N Conlisk; L E J Thomas-Seale; N Roberts; P Pankaj; P R Hoskins Computational simulations of MR elastography in idealised abdominal aortic aneurysms, Biomedical Physics Engineering Express, Volume 2 (2016) no. 4, p. 045016 | DOI:10.1088/2057-1976/2/4/045016
  • Mashhour K. Chakouch; Philippe Pouletaut; Fabrice Charleux; Sabine F. Bensamoun Viscoelastic shear properties of in vivo thigh muscles measured by MR elastography, Journal of Magnetic Resonance Imaging, Volume 43 (2016) no. 6, p. 1423 | DOI:10.1002/jmri.25105
  • Lucy V Hiscox; Curtis L Johnson; Eric Barnhill; Matt D J McGarry; John Huston; Edwin J R van Beek; John M Starr; Neil Roberts Magnetic resonance elastography (MRE) of the human brain: technique, findings and clinical applications, Physics in Medicine and Biology, Volume 61 (2016) no. 24, p. R401 | DOI:10.1088/0031-9155/61/24/r401
  • Robert C. Molthen; John B. Weaver; Ruth J. Okamoto; Curtis L. Johnson; Yuan Feng; John G. Georgiadis; Philip V. Bayly, Medical Imaging 2014: Biomedical Applications in Molecular, Structural, and Functional Imaging, Volume 9038 (2014), p. 90381E | DOI:10.1117/12.2044633
  • F. Pierron; H. Zhu; C. Siviour Beyond Hopkinson's bar, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 372 (2014) no. 2023, p. 20130195 | DOI:10.1098/rsta.2013.0195
  • Mohammad Honarvar; Ramin Sahebjavaher; Ralph Sinkus; Robert Rohling; Septimiu E. Salcudean Curl-Based Finite Element Reconstruction of the Shear Modulus Without Assuming Local Homogeneity: Time Harmonic Case, IEEE Transactions on Medical Imaging, Volume 32 (2013) no. 12, p. 2189 | DOI:10.1109/tmi.2013.2276060
  • Johnny Y. Zhang; Grand Roman Joldes; Adam Wittek; Karol Miller Patient‐specific computational biomechanics of the brain without segmentation and meshing, International Journal for Numerical Methods in Biomedical Engineering, Volume 29 (2013) no. 2, p. 293 | DOI:10.1002/cnm.2507
  • Karol Miller; Jia Lu On the prospect of patient-specific biomechanics without patient-specific properties of tissues, Journal of the Mechanical Behavior of Biomedical Materials, Volume 27 (2013), p. 154 | DOI:10.1016/j.jmbbm.2013.01.013
  • Magnetic Resonance Elastography, Nonlinear Inverse Problems in Imaging (2013), p. 335 | DOI:10.1002/9781118478141.ch10
  • Jiah Song; Oh In Kwon; Jin Keun Seo Anisotropic elastic moduli reconstruction in transversely isotropic model using MRE, Inverse Problems, Volume 28 (2012) no. 11, p. 115003 | DOI:10.1088/0266-5611/28/11/115003
  • Kevin J. Glaser; Armando Manduca; Richard L. Ehman Review of MR elastography applications and recent developments, Journal of Magnetic Resonance Imaging, Volume 36 (2012) no. 4, p. 757 | DOI:10.1002/jmri.23597
  • M. D. J. McGarry; E. E. W van Houten; A. J. Pattison; J. B. Weaver; K. D. Paulsen Comparison of Iterative and Direct Inversion MR Elastography Algorithms, Mechanics of Biological Systems and Materials, Volume 2 (2011), p. 49 | DOI:10.1007/978-1-4614-0219-0_6

Cité par 17 documents. Sources : Crossref

Commentaires - Politique