Comptes Rendus
On lack-of-knowledge theory in structural mechanics
[Sur la théorie des méconnaissances en mécanique des structures]
Comptes Rendus. Mécanique, Volume 338 (2010) no. 7-8, pp. 424-433.

La validation de modèles structuraux complexes – c'est-à-dire la vérification de leur qualité vis-à-vis d'une référence expérimentale – demeure un verrou scientifique fort. Le véritable problème de validation consiste à comparer la réponse du modèle numérique, qu'il soit déterministe ou pas, avec la réponse de toutes les structures réelles, dans tous les environnements possible. Un premier élément de réponse à ce problème a été introduit via la théorie des méconnaissances au LMT-Cachan. Afin de « modéliser l'inconnu », cette théorie prend en compte toutes les incertitudes, en incluant les erreurs de modèles, à travers le concept de méconnaissances de base. Dans le cet article, on introduit des méconnaissances de base sur les excitations (amplitude et direction). Ces méconnaissances de base sont ensuite propagées à travers le modèle mécanique afin de déterminer des intervalles dont les bornes sont probabilistes, contenant une quantité d'intérêt (contrainte ou déplacement). Ensuite une stratégie de réduction des méconnaissances de base par apport d'information expérimentale est présentée sur un exemple académique.

Today, the validation of complex structural models – i.e. the assessment of their quality compared to an experimental reference – remains a major issue. Strictly speaking, the validation problem consists in comparing the response of the numerical model (whether deterministic or stochastic) with complete reality. A first answer to this problem, using Lack-Of-Knowledge (LOK) theory, was introduced at LMT-Cachan. This theory is an attempt to “model the unknown” by taking all the sources of uncertainties, including modeling errors, into account through the concept of basic LOKs. In this article, we introduce basic LOKs associated with both the amplitudes and directions of excitations. These basic LOKs are propagated rigorously throughout the mechanical model in order to determine intervals (with stochastic bounds) within which lies a given quantity of interest (stress or displacement). Then, we introduce a strategy for the reduction of lack of knowledge, which we illustrate through an academic example.

Publié le :
DOI : 10.1016/j.crme.2010.07.012
Keywords: Lack-of-knowledge, Validation, Uncertainties, Inverse problem
Mot clés : Méconnaissances, Validation, Incertitudes, Problèmes inverses

François Louf 1 ; Paul Enjalbert 1 ; Pierre Ladevèze 1 ; Thierry Romeuf 2

1 LMT-Cachan (ENS Cachan/CNRS/UPMC/PRES UniverSud Paris), 61, avenue du Président Wilson, 94235 Cachan cedex, France
2 EADS Astrium, route de Verneuil BP96, 78133 Les Mureaux cedex, France
@article{CRMECA_2010__338_7-8_424_0,
     author = {Fran\c{c}ois Louf and Paul Enjalbert and Pierre Ladev\`eze and Thierry Romeuf},
     title = {On lack-of-knowledge theory in structural mechanics},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {424--433},
     publisher = {Elsevier},
     volume = {338},
     number = {7-8},
     year = {2010},
     doi = {10.1016/j.crme.2010.07.012},
     language = {en},
}
TY  - JOUR
AU  - François Louf
AU  - Paul Enjalbert
AU  - Pierre Ladevèze
AU  - Thierry Romeuf
TI  - On lack-of-knowledge theory in structural mechanics
JO  - Comptes Rendus. Mécanique
PY  - 2010
SP  - 424
EP  - 433
VL  - 338
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crme.2010.07.012
LA  - en
ID  - CRMECA_2010__338_7-8_424_0
ER  - 
%0 Journal Article
%A François Louf
%A Paul Enjalbert
%A Pierre Ladevèze
%A Thierry Romeuf
%T On lack-of-knowledge theory in structural mechanics
%J Comptes Rendus. Mécanique
%D 2010
%P 424-433
%V 338
%N 7-8
%I Elsevier
%R 10.1016/j.crme.2010.07.012
%G en
%F CRMECA_2010__338_7-8_424_0
François Louf; Paul Enjalbert; Pierre Ladevèze; Thierry Romeuf. On lack-of-knowledge theory in structural mechanics. Comptes Rendus. Mécanique, Volume 338 (2010) no. 7-8, pp. 424-433. doi : 10.1016/j.crme.2010.07.012. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.07.012/

[1] K. Popper The Logic of Scientific Discovery, Routledge Classics, Taylor and Francis, 2003

[2] J.T. Oden; T. Belytschko; I. Babuska; T. Hughes Research directions in computational mechanics, Computer Methods in Applied Mechanics and Engineering, Volume 192 (2003), pp. 913-922

[3] F.M. Hemez; S.W. Doebling; M.C. Anderson A brief tutorial on verification and validation, Proceedings of the 22nd International Modal Analysis Conference (IMAC-XXII), Dearborn, Michigan, January 26–29, 2004

[4] W. Oberkampf, T. Trucano, C. Hirsh, Verification, validation and predictive capability in computational engineering and physics, Technical report, Sandia Report 2003-3769, 2003.

[5] A. Saltelli; S. Tarantola; F. Campolongo; M. Ratto Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models, John Wiley and Sons, 2004

[6] H. Berger; R. Ohayon; L. Quetin; L. Barthe; P. Ladevèze; M. Reynier Updating methods for structural dynamics models, La Recherche Aérospatiale, Volume 5 (1991), pp. 9-20 (in French)

[7] C. Farhat; F. Hemez Updating finite element dynamics models using an element-by-element sensitivity methodology, AIAA Journal, Volume 31 (1993) no. 9, pp. 1702-1711

[8] J. Piranda, G. Lallement, S. Cogan, Parametric correction of finite element modes by minimization of an output residual: improvement of the sensitivity method, in: Proc. IMAC IX, Firenze, Italy, 1991, pp. 363–368.

[9] S. Lammens, M. Brughmans, J. Leuridan, W. Heylen, P. Sas, Application of a FRF based model updating technique for the validation of a finite element model of components of the automotive industry, in: ASME Conference, Boston, 1995, pp. 1191–1200.

[10] P. Ladevèze; M. Reynier FE modeling and analysis: a localization method of stiffness errors and adjustments of FE models, Vibrations Analysis Techniques and Application, ASME Publishers, 1989, pp. 355-361

[11] B. Faverjon; P. Ladevèze; F. Louf Validation of stochastic linear structural dynamics models, Computers and Structures, Volume 87 (2009) no. 13–14, pp. 829-837

[12] P. Ladevèze, On a theory of the lack of knowledge in structural computation, Technical Note SY/XS 136 127, EADS Launch Vehicles, April 2002 (in French).

[13] P. Ladevèze, Model validation or how can one describe the lack of knowledge, IACM Expressions, 2005.

[14] G.I. Schuëller Computational stochastic mechanics – recent advances, Computers and Structures, Volume 79 (2001), pp. 2225-2234

[15] Y. Ben-Haim Information-Gap Decision Theory, Academic Press, London, 2001

[16] G. Klir Generalized information theory, Fuzzy Sets and Systems, Volume 40 (1991), pp. 127-142

[17] P. Walley Statistical Reasoning with Imprecise Probabilities, Chapman and Hall, 1990

[18] R.M. Moore Methods and Applications of Interval Analysis, Studies in Applied Mathematics (SIAM), 1979

[19] P. Ladevèze; G. Puel; T. Romeuf Lack of knowledge in structural model validation, Computer Methods in Applied Mechanics and Engineering, Volume 195 ( July 2006 ), pp. 4697-4710

[20] P. Ladevèze; G. Puel; T. Romeuf Reduction of the lack of knowledge of an industrial structural dynamics model, 8th US National Congress on Computational Mechanics, Austin, Texas, July 25–27, 2005

Cité par Sources :

Commentaires - Politique