This article aims at solving a two-dimensional inverse heat conduction problem in order to retrieve both the thermal diffusivity and heat source field in a thin plate. A spatial random heat pulse is applied to the plate and the thermal response is analysed. The inverse approach is based on the minimisation of a nodal predictive error model, which yields a linear estimation problem. As a result of this approach, the sensitivity matrix is directly filled with experimental data, and thus is partially noisy. Bayesian estimators, such as the Maximum A Posteriori and a Markov Chain Monte Carlo approach (Metropolis–Hastings), are implemented and compared with the Ordinary Least Squares solution. Simulated temperature measurements are used in the inverse analysis. The nodal strategy relies on the availability of temperature measurements with fine spatial resolution and high frequency, typical of nowadays infrared cameras. The effects of both the measurement errors and of the model errors on the inverse problem solution are also analysed.
Un problème de conduction 2D est traité pour estimer un champ de diffusivité thermique et terme source sur une plaque mince. Un flash photothermique spatiallement aléatoire est appliqué à la plaque et on analyse le champ de réponse thermique. L'inversion est abordée en minimisant un modèle basé sur l'erreur de prédiction, ce qui permet de rester dans un cadre d'estimation linéaire. Une conséquence directe est que la matrice de sensibilité est construite avec les données expérimentales, et donc contient des erreurs de mesures. On développe des estimateurs bayésiens tels que l'estimateur du Maximum à Postériori ou dans le cadre des algorithmes de Monte Carlo et Chaînes de Markov (Metropolis–Hastings), pour les comparer à la solution des Moindres Carrés Ordinaires. Les résultats sont obtenus à partir de données simulées. L'approche nodale est liée à l'obtention de mesures par thermographie infrarouge. On analyse à la fois l'effet des erreurs de mesures et des erreurs de modèles sur les résultats de l'estimation.
Mots-clés : Transferts thermiques, Champ de diffusivité thermique, Cartographie de terme source, Traitement d'images infrarouges, Metropolis–Hastings, Problèmes inverses, Estimation bayésienne
H. Massard 1, 2, 3; Olivier Fudym 2, 3, 4; H.R.B. Orlande 1; J.C. Batsale 4
@article{CRMECA_2010__338_7-8_434_0, author = {H. Massard and Olivier Fudym and H.R.B. Orlande and J.C. Batsale}, title = {Nodal predictive error model and {Bayesian} approach for thermal diffusivity and heat source mapping}, journal = {Comptes Rendus. M\'ecanique}, pages = {434--449}, publisher = {Elsevier}, volume = {338}, number = {7-8}, year = {2010}, doi = {10.1016/j.crme.2010.07.015}, language = {en}, }
TY - JOUR AU - H. Massard AU - Olivier Fudym AU - H.R.B. Orlande AU - J.C. Batsale TI - Nodal predictive error model and Bayesian approach for thermal diffusivity and heat source mapping JO - Comptes Rendus. Mécanique PY - 2010 SP - 434 EP - 449 VL - 338 IS - 7-8 PB - Elsevier DO - 10.1016/j.crme.2010.07.015 LA - en ID - CRMECA_2010__338_7-8_434_0 ER -
%0 Journal Article %A H. Massard %A Olivier Fudym %A H.R.B. Orlande %A J.C. Batsale %T Nodal predictive error model and Bayesian approach for thermal diffusivity and heat source mapping %J Comptes Rendus. Mécanique %D 2010 %P 434-449 %V 338 %N 7-8 %I Elsevier %R 10.1016/j.crme.2010.07.015 %G en %F CRMECA_2010__338_7-8_434_0
H. Massard; Olivier Fudym; H.R.B. Orlande; J.C. Batsale. Nodal predictive error model and Bayesian approach for thermal diffusivity and heat source mapping. Comptes Rendus. Mécanique, Inverse problems, Volume 338 (2010) no. 7-8, pp. 434-449. doi : 10.1016/j.crme.2010.07.015. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.07.015/
[1] System Identification: Theory for the User, Prentice Hall, 1987
[2] Autoregressive algorithms and spatially random flash excitation for 3D non destructive evaluation with infrared cameras, QIRT J., Volume 1 (2004), pp. 5-20
[3] Nodal and modal strategies for longitudinal thermal diffusivity profile estimation. Application to the non destructive evaluation of SiC/SiC composites under uniaxial tensile tests, Infrared Phys. Technol., Volume 52 (2009), pp. 1-13
[4] Statistical and Computational Inverse Problems, Appl. Math. Sci., vol. 160, Springer-Verlag, 2004
[5] Inverse Problems, Course Notes Phys., vol. 707, University of Auckland, 2006
[6] Inverse problems in heat transfer (W.J. Minkowycz; E.M. Sparrow; J.Y. Murthy, eds.), The Handbook of Numerical Heat Transfer, John Wiley & Sons, 2004 (chap. 17)
[7] A Bayesian inference approach to the stochastic inverse heat conduction problem, Int. J. Heat Mass Transfer, Volume 47 (2004), pp. 3927-3941
[8] Using Bayesian statistics in the estimation of heat source in radiation, Int. J. Heat Mass Transfer, Volume 48 (2005), pp. 15-29
[9] Bayesian Statistics, Oxford Univ. Press, London, 2004
[10] An Introduction to Bayesian Inference and Decision, Probabilistic Publishing, Gainsville, 2003
[11] Parameter Estimation in Engineering and Science, Wiley–Interscience, New York, 1977
[12] Reconstruction of thermal conductivity and heat capacity using a tomographic approach, Int. J. Heat Mass Transfer, Volume 50 (2007), pp. 5150-5160
[13] Eigenfunction expansions for transient diffusion in heterogeneous media, Int. J. Heat Mass Transfer, Volume 52 (2009), pp. 5029-5039
Cited by Sources:
Comments - Policy