[Évolution de connectivité fonctionnelle des réseaux de contact et de chaines de force]
Nous analysons la réponse constitutive de matériaux granulaires denses, au travers de l'évolution des forces de contact et de la texture, dans le cadre des réseaux complexes. L'évolution des déformations de trois classes de sous-réseaux, comprenant les cycles minimaux et les chaines de force, permet d'éclairer la disparition de connectivité fonctionnelle et de structure au cours du processus de rupture. L'analyse des processus dynamiques associés à de tels réseaux, au sein d'échantillons comprimés de manière biaxiale, révèle des aspects communs qui suggèrent l'existence d'une hiérarchie structurelle intrinsèque. En outre, l'influence de la pression de confinement et de la résistance au roulement inter-particulaire sur l'évolution de tels réseaux apparaît clairement aux échelles mésoscopique et macroscopique.
We analyze the rheological response, i.e., fabric and contact force evolution, of dense granular materials from a complex networks perspective. The strain evolution of three classes of subnetworks, i.e., k-cores, minimal cycles and force chain networks, elucidates the breakdown of functional connectivity and structure in the lead up to and during failure. Feature vectors and dynamics occurring in such networks in three different biaxially compressed two-dimensional samples reveal some common aspects which are suggestive of an intrinsic structural hierarchy in granular networks – while differences shed light on the influence of confining pressure and interparticle rolling resistance on the evolution of these networks both at the mesoscopic as well as macroscopic levels.
Mot clés : Rhéologie, Matériaux granulaires
Antoinette Tordesillas 1 ; Patrick O'Sullivan 1 ; David M. Walker 1 ; Paramitha 1
@article{CRMECA_2010__338_10-11_556_0, author = {Antoinette Tordesillas and Patrick O'Sullivan and David M. Walker and Paramitha}, title = {Evolution of functional connectivity in contact and force chain networks: {Feature} vectors, \protect\emph{k}-cores and minimal cycles}, journal = {Comptes Rendus. M\'ecanique}, pages = {556--569}, publisher = {Elsevier}, volume = {338}, number = {10-11}, year = {2010}, doi = {10.1016/j.crme.2010.09.004}, language = {en}, }
TY - JOUR AU - Antoinette Tordesillas AU - Patrick O'Sullivan AU - David M. Walker AU - Paramitha TI - Evolution of functional connectivity in contact and force chain networks: Feature vectors, k-cores and minimal cycles JO - Comptes Rendus. Mécanique PY - 2010 SP - 556 EP - 569 VL - 338 IS - 10-11 PB - Elsevier DO - 10.1016/j.crme.2010.09.004 LA - en ID - CRMECA_2010__338_10-11_556_0 ER -
%0 Journal Article %A Antoinette Tordesillas %A Patrick O'Sullivan %A David M. Walker %A Paramitha %T Evolution of functional connectivity in contact and force chain networks: Feature vectors, k-cores and minimal cycles %J Comptes Rendus. Mécanique %D 2010 %P 556-569 %V 338 %N 10-11 %I Elsevier %R 10.1016/j.crme.2010.09.004 %G en %F CRMECA_2010__338_10-11_556_0
Antoinette Tordesillas; Patrick O'Sullivan; David M. Walker; Paramitha. Evolution of functional connectivity in contact and force chain networks: Feature vectors, k-cores and minimal cycles. Comptes Rendus. Mécanique, Volume 338 (2010) no. 10-11, pp. 556-569. doi : 10.1016/j.crme.2010.09.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.09.004/
[1] The structure of shear bands in idealized granular materials, Applied Mechanics Reviews, ASME, Volume 45 (1992), p. S118-S122
[2] Micro-deformation mechanism of shear banding process based on modified distinct element method, Powder Technology, Volume 109 (2000), pp. 192-205
[3] Large scale discrete element modeling of vehicle–soil interaction, Journal of Engineering Mechanics, Volume 127 (2001), pp. 1027-1032
[4] A discontinuous future for numerical modeling in soil and rock, ASCE Conference Proceedings, Volume 259 (2002), p. 1 | DOI
[5] Influence of particle shape on granular contact signatures and shear strength: New insights from simulations, International Journal of Solids and Structures, Volume 41 (2004), pp. 5863-5870
[6] Critical state and evolution of coordination number in simulated granular materials, International Journal of Solids and Structures, Volume 41 (2004), pp. 5763-5774
[7] A numerical examination of shear banding and simple shear non-coaxial flow rules, Philosophical Magazine, Volume 86 (2006), pp. 3425-3452
[8] Role of anisotropy in the elastoplastic response of a polygonal packing, Physical Review E, Volume 71 (2006), p. 051304
[9] Influence of relative density on granular materials behavior: DEM simulations of triaxial tests, Granular Matter, Volume 11 (2009), pp. 221-236
[10] 3D shape characterization and image-based DEM simulation of the lunar soil simulant FJS-1, Journal of Aerospace Engineering, Volume 22 (2009), pp. 15-23
[11] A discrete numerical model for granular assemblies, Geotechnique, Volume 29 (1979), pp. 47-65
[12] Mechanics of Granular Materials: An Introduction, A.A. Balkema, Brookfield, VT, 1999
[13] Granular Patterns, Oxford University Press, 2009
[14] Mechanics of Granular Materials: An Introduction (M. Oda; K. Iwashita, eds.), A.A. Balkema, Rotterdam, 1999
[15] Apollonian networks: Simultaneously scale-free, small world, Euclidean, space filling and with matching graphs, Physical Review Letters, Volume 94 (2005), p. 018702
[16] Granular matter and networks: Three related examples, Soft Matter, Volume 4 (2008), pp. 2125-2131
[17] Evolving loop structure in gradually tilted two-dimensional granular packings, Physical Review E, Volume 77 (2008), p. 041307
[18] Force chains in sheared granular media of irregular particles (M. Nakagawa; S. Luding, eds.), Powders & Grains 2009, Proceedings of the 6th International Conference Micromechanics of Granular Media 2009, AIP Conference Proceedings, vol. 1145, AIP, Colorado, USA, 2009
[19] Topological evolution in dense granular materials: A complex networks perspective, International Journal of Solids and Structures, Volume 47 (2010), pp. 624-639
[20] Exploring complex networks, Nature, Volume 410 (2001), pp. 268-276
[21] Statistical mechanics of complex networks, Reviews of Modern Physics, Volume 74 (2002), pp. 47-97
[22] Subgraph centrality in complex networks, Physical Review E, Volume 71 (2005), p. 056103
[23] Spectral measures of bipartivity in complex networks, Physical Review E, Volume 72 (2005), p. 046105
[24] Cycles and clustering in bipartite networks, Physical Review E, Volume 72 (2005), p. 056127
[25] Characterization of complex networks: A survey of measurements, Advances in Physics, Volume 56 (2007), pp. 167-242
[26] Force chains and force cycles, Physical Review E, Volume 81 (2010), p. 011302
[27] A. Tordesillas, Q. Lin, J. Zhang, R.P. Behringer, J.Y. Shi, Structural stability of self-organized cluster conformations in dense granular materials, 2010, in preparation.
[28] A. Tordesillas, D.M. Walker, G. Froyland, R.P. Behringer, J. Zhang, Structural stability and transition dynamics of granular motifs, unpublished manuscript, 2010.
[29] Complex networks: Structure and dynamics, Physics Reports, Volume 424 (2006), pp. 175-308
[30] Photoelastic verification of a mechanical model for the flow of a granular material, Journal of the Mechanics and Physics of Solids, Volume 20 (1972), pp. 337-340
[31] Buckling force chains in dense granular assemblies: Physical and numerical experiments, Geomechanics and Geoengineering, Volume 4 (2009), pp. 3-16
[32] Statistical properties of a 2D granular materials subjected to cyclic shear, Granular Matter, Volume 12 (2010), pp. 159-172
[33] Bimodal character of stress transmission in granular packings, Phys. Rev. Lett., Volume 80 (1998), pp. 61-64
[34] k-core organization of complex networks, Physical Review Letters, Volume 96 (2006), p. 040601
[35] Force chain buckling, unjamming transitions and shear banding in dense granular assemblies, Philosophical Magazine, Volume 87 (2007), pp. 4987-5016
[36] How do interparticle contact friction, packing density and degree of polydispersity affect force propagation in particulate assemblies?, Journal of Statistical Mechanics: Theory and Experiment (2006), p. P09003
[37] Link between single-particle properties and macroscopic properties in particulate assemblies: Role of structures within structures, Philosophical Transactions of The Royal Society A, Volume 365 (2007), pp. 2879-2891
[38] A numerical examination of shear banding and simple shear non-coaxial flow rules, Philosophical Magazine, Volume 86 (2006), pp. 3425-3452
[39] Macro- and micro-behaviors of granular materials under different sample preparations methods and stress paths, International Journal of Solids and Structures, Volume 41 (2004), pp. 5871-5884
[40] Contact rolling and deformation in granular media, International Journal of Solids and Structures, Volume 41 (2004), pp. 5793-5820
[41] Rolling resistance at contacts in simulation of shear band development by DEM, ASCE Journal of Engineering Mechanics, Volume 124 (1998), pp. 285-292
[42] On the modeling of confined buckling of force chains, Journal of the Mechanics and Physics of Solids, Volume 57 (2009), pp. 706-727
[43] Stick-slip dynamics of a granular layer under shear, Physical Review E, Volume 69 (2004), p. 031302
[44] Self-organized criticality in a sheared granular stick-slip system, Physical Review E, Volume 63 (2001), p. 061312
[45] Mesoscale measures of nonaffine deformation in dense granular assemblies, ASCE Journal of Engineering Mechanics, Volume 134 (2008), pp. 1095-1113
[46] Depth first search and linear graph algorithms, SIAM Journal on Computing, Volume 1 (1972), pp. 146-160
Cité par Sources :
Commentaires - Politique