[Étude micromécanique de la plasticité des matériaux granulaires]
La déformation plastique des matériaux granulaires est étudiée du point de vue micromécanique, dans lequel l'assemblage des particules et des contacts entre particules est considéré comme une structure mécanique. Ceci est fait de trois façons. Tout d'abord, en analysant le degré de redondance du système obtenu en comparant le nombre de degrés de liberté lié aux forces de contact avec le nombre d'équations d'équilibre ; Deuxièmement, en déterminant le spectre des valeurs propres de la matrice de rigidité de la structure qui est représentée par les particules et leurs contacts ; Troisièmement, en étudiant l'évolution pour une déformation imposée du tenseur de rigidité du milieu continu élastique équivalent au système analysé. Pour une déformation imposée, le degré de redondance évolue rapidement vers un état avec une petite redondance, c'est-à-dire que le système devient quasi isostatique. Le spectre des valeurs propres du système montre les modes singuliers et quasi singuliers au niveau de la résistance au cisaillement maximale et en grandes déformations. Le tenseur de rigidité élastique du milieu continu équivalent devient fortement anisotrope pour une déformation imposée, et fait apparaître la nature non affine de la déformation. L'hypothèse d'un tenseur de rigidité élastique, qui est constant dans des relations constitutives élasto-plastiques des matériaux granulaires, est généralement incorrecte. Globalement, le comportement macroscopique plastique est lié d'une part aux frottements aux contacts et d'autre part à l'évolution du réseau de contacts que l'on peut assimiler à un mécanisme d'endommagement.
Plastic deformation of granular materials is investigated from the micromechanical viewpoint, in which the assembly of particles and interparticle contacts is considered as a mechanical structure. This is done in three ways. Firstly, by investigating the degree of redundancy of the system by comparing the number of force degrees of freedom at contacts with the number of governing equilibrium equations; Secondly, by determining the spectrum of eigenvalues of the stiffness matrix for the structure that is represented by the particles and their contacts; Thirdly, by investigating the evolution with imposed strain of the continuum elastic stiffness tensor of the system. It is found that, with increasing imposed strain, the degree of redundancy rapidly evolves towards a state with small redundancy, i.e. the system becomes nearly statically determinate. The spectrum of the system shows many singular and near-singular modes at peak shear strength and at large strain. The continuum elastic stiffness tensor becomes strongly anisotropic with increasing imposed strain and shows strong non-affinity of deformation. The assumption of a constant and isotropic elastic stiffness tensor in elasto-plastic continuum constitutive relations for granular materials is generally incorrect. Overall, the plastic continuum behaviour of granular materials originates from the plastic frictional behaviour at contacts and from damage in the form of changes in the contact network.
Mots-clés : Milieux granulaires, Plasticité, Micromécanique
Niels P. Kruyt 1
@article{CRMECA_2010__338_10-11_596_0, author = {Niels P. Kruyt}, title = {Micromechanical study of plasticity of granular materials}, journal = {Comptes Rendus. M\'ecanique}, pages = {596--603}, publisher = {Elsevier}, volume = {338}, number = {10-11}, year = {2010}, doi = {10.1016/j.crme.2010.09.005}, language = {en}, }
Niels P. Kruyt. Micromechanical study of plasticity of granular materials. Comptes Rendus. Mécanique, Micromechanics of granular materials, Volume 338 (2010) no. 10-11, pp. 596-603. doi : 10.1016/j.crme.2010.09.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.09.005/
[1] A discrete numerical model for granular assemblies, Géotechnique, Volume 9 (1979), pp. 47-65
[2] The behaviour of an assembly of rotund, rigid, cohesionless particles I and II, Proceedings of the Royal Society of London A, Volume 286 (1965), pp. 62-97
[3] Initial fabric and their relation to mechanical properties of granular material, Soils and Foundations, Volume 12 (1972), pp. 19-36
[4] Constitution of mechanics of granular materials through graph theory (S.C. Cowin; M. Satake, eds.), US–Japan Seminar on Continuum-Mechanical and Statistical Approaches to Granular Materials, Elsevier, Amsterdam, the Netherlands, 1978, pp. 47-62
[5] Distribution of directional data and fabric tensors, International Journal of Engineering Science, Volume 22 (1984), pp. 149-164
[6] Observations on stress–force–fabric relationships in idealized granular materials, Mechanics of Materials, Volume 9 (1990), pp. 65-80
[7] Photoelastic verification of a mechanical model for the flow of a granular materials, Journal of the Mechanics and Physics of Solids, Volume 20 (1972), pp. 337-351
[8] Micromechanical study of elastic moduli of loose granular materials, Journal of the Mechanics and Physics of Solids, Volume 58 (2010), pp. 1286-1301
[9] Structured deformation in granular materials, Mechanics of Materials, Volume 31 (1999), pp. 407-429
[10] Quasi-static shear deformation of a soft particle system, Powder Technology, Volume 109 (2000), pp. 179-191
[11] Frictional collapse of granular assemblies, Journal of Applied Mechanics (Transactions of the ASME), Volume 71 (2004), pp. 350-358
[12] Modelling of microscopic mechanisms in granular material (J.T. Jenkins; M. Satake, eds.), Mechanics of Granular Materials: New Models and Constitutive Relations, Elsevier, Amsterdam, the Netherlands, 1983, pp. 137-149
[13] Geometric origin of mechanical properties of granular materials, Physical Review E, Volume 61 (2000), pp. 6802-6836
[14] Quasistatic rheology and the origins of strain, Comptes Rendus Physique, Volume 3 (2002), pp. 131-140
[15] Jamming at zero temperature and zero applied stress: the epitome of disorder, Physical Review E, Volume 68 (2003), p. 011306
[16] Shear strength, dilatancy, energy and dissipation in quasi-static deformation of granular materials, Journal of Statistical Mechanics: Theory and Experiment (2006), p. P07021
[17] Space-filling bearings, Physical Review Letters, Volume 65 (1990), pp. 3223-3226
[18] Critical state and evolution of coordination number in simulated granular materials, International Journal of Solids and Structures, Volume 41 (2004), pp. 5763-5774
[19] A micromechanically-based constitutive model for frictional deformation of granular materials, Journal of the Mechanics and Physics of Solids, Volume 48 (2000), pp. 1541-1563
[20] Fluctuations and the effective moduli of an isotropic, random aggregate of identical, frictionless spheres, Journal of the Mechanics and Physics of Solids, Volume 53 (2005), pp. 197-225
[21] Micromechanical definition of an entropy for quasi-static deformation of granular materials, Journal of the Mechanics and Physics of Solids, Volume 57 (2009), pp. 634-655
[22] Micromechanical aspects of isotropic granular assemblies with linear contact interactions, Journal of Applied Mechanics (Transactions of the ASME), Volume 55 (1988), pp. 17-23
[23] Statistics of the elastic behaviour of granular materials, International Journal of Solids and Structures, Volume 38 (2001), pp. 4879-4899
[24] Micro–macro transition for anisotropic, frictional granular packings, International Journal of Solids and Structures, Volume 41 (2004), pp. 5821-5836
[25] Why effective medium theory fails in granular materials, Physical Review Letters, Volume 83 (1999), pp. 5070-5073
[26] On the elastic moduli of two-dimensional assemblies of disks: relevance and modeling of fluctuations in particle displacements and rotations, Computers and Mathematics with Applications, Volume 55 (2008), pp. 245-256
[27] Statics and kinematics of discrete Cosserat-type granular materials, International Journal of Solids and Structures, Volume 40 (2003), pp. 511-534
- Multiscale insights into Sliding Surface Liquefaction through DEM simulations, Computers and Geotechnics, Volume 183 (2025), p. 107191 | DOI:10.1016/j.compgeo.2025.107191
- Micromechanism study on the influence of particle deposition angle on mechanical properties of sand, Bulletin of Engineering Geology and the Environment, Volume 83 (2024) no. 4 | DOI:10.1007/s10064-024-03597-x
- Micro-mechanisms of force network rearrangement in granular materials, Computers and Geotechnics, Volume 174 (2024), p. 106602 | DOI:10.1016/j.compgeo.2024.106602
- Exploring the influence of size-related factors on geocell-reinforced soil response using coupled continuum-discontinuum analysis, Geotextiles and Geomembranes, Volume 52 (2024) no. 4, p. 435 | DOI:10.1016/j.geotexmem.2023.12.008
- Exploring the structural and spatial evolutions of contact networks in granular systems via the image-based recognition technique, Computers and Geotechnics, Volume 156 (2023), p. 105229 | DOI:10.1016/j.compgeo.2022.105229
- Data-driven modeling of granular matter’s elastic nonlinearity by volume constraint, Computers and Geotechnics, Volume 159 (2023), p. 105419 | DOI:10.1016/j.compgeo.2023.105419
- Effects of pre-shearing and pre-consolidation histories on liquefaction behaviour of saturated loose sand: DEM investigation, Engineering Computations, Volume 40 (2023) no. 9/10, p. 2891 | DOI:10.1108/ec-06-2023-0266
- Modeling shear-induced solid-liquid transition of granular materials using persistent homology, Journal of the Mechanics and Physics of Solids, Volume 176 (2023), p. 105307 | DOI:10.1016/j.jmps.2023.105307
- DEM studies on the effect of particle breakage on the critical state behaviours of granular soils under undrained shear conditions, Acta Geotechnica, Volume 17 (2022) no. 11, p. 4865 | DOI:10.1007/s11440-022-01580-y
- Evolution of granular media under constant-volume multidirectional cyclic shearing, Acta Geotechnica, Volume 17 (2022) no. 3, p. 779 | DOI:10.1007/s11440-021-01239-0
- Effects of deviator strain histories on liquefaction of loose sand using DEM, Computers and Geotechnics, Volume 136 (2021), p. 104213 | DOI:10.1016/j.compgeo.2021.104213
- Study on Meso-Structure Evolution in Granular Matters Based on the Contact Loop Recognition and Determination Technique, Materials, Volume 14 (2021) no. 21, p. 6542 | DOI:10.3390/ma14216542
- Nonlinear Phenomena in Granular Solids: Modeling and Experiments, Developments and Novel Approaches in Nonlinear Solid Body Mechanics, Volume 130 (2020), p. 179 | DOI:10.1007/978-3-030-50460-1_12
- Contact force network evolution in active earth pressure state of granular materials: photo-elastic tests and DEM, Granular Matter, Volume 22 (2020) no. 3 | DOI:10.1007/s10035-020-01033-x
- Macroscopic softening in granular materials from a mesoscale perspective, International Journal of Solids and Structures, Volume 193-194 (2020), p. 222 | DOI:10.1016/j.ijsolstr.2020.02.022
- Controlled heavy-haul traffic loading as a method to remediate liquefiable soft silts, Canadian Geotechnical Journal, Volume 56 (2019) no. 7, p. 911 | DOI:10.1139/cgj-2017-0223
- Dependency of Dilatancy Ratio on Fabric Anisotropy in Granular Materials, Journal of Engineering Mechanics, Volume 145 (2019) no. 10 | DOI:10.1061/(asce)em.1943-7889.0001660
- Flow-Arrest Transitions in Frictional Granular Matter, Physical Review Letters, Volume 122 (2019) no. 4 | DOI:10.1103/physrevlett.122.048003
- Three-dimensional DEM investigation of critical state and dilatancy behaviors of granular materials, Acta Geotechnica, Volume 12 (2017) no. 3, p. 527 | DOI:10.1007/s11440-017-0530-8
- Bibliography, Granular Geomechanics (2017), p. 233 | DOI:10.1016/b978-1-78548-071-3.50012-8
- Strain in Granular Media: Probabilistic Approach to Dirichlet Tessellation, Journal of Engineering Mechanics, Volume 143 (2017) no. 1 | DOI:10.1061/(asce)em.1943-7889.0001045
- Degradation of soft subgrade soil from slow, large, cyclic heavy-haul road loads: a review, Canadian Geotechnical Journal, Volume 53 (2016) no. 9, p. 1435 | DOI:10.1139/cgj-2015-0234
- Onset of structural evolution in granular materials as a redundancy problem, Granular Matter, Volume 18 (2016) no. 3 | DOI:10.1007/s10035-016-0640-2
- A micromechanical study of dilatancy of granular materials, Journal of the Mechanics and Physics of Solids, Volume 95 (2016), p. 411 | DOI:10.1016/j.jmps.2016.01.019
- Unified theory of inertial granular flows and non-Brownian suspensions, Physical Review E, Volume 91 (2015) no. 6 | DOI:10.1103/physreve.91.062206
- Criticality in the Approach to Failure in Amorphous Solids, Physical Review Letters, Volume 115 (2015) no. 16 | DOI:10.1103/physrevlett.115.168001
- On micromechanical characteristics of the critical state of two-dimensional granular materials, Acta Mechanica, Volume 225 (2014) no. 8, p. 2301 | DOI:10.1007/s00707-014-1128-y
- Mechanical properties of inclined frictional granular layers, Granular Matter, Volume 16 (2014) no. 2, p. 193 | DOI:10.1007/s10035-014-0482-8
- Shear dilatancy in marginal solids, Granular Matter, Volume 16 (2014) no. 2, p. 203 | DOI:10.1007/s10035-013-0436-6
- Micromechanical study of elastic moduli of three-dimensional granular assemblies, International Journal of Solids and Structures, Volume 51 (2014) no. 13, p. 2336 | DOI:10.1016/j.ijsolstr.2014.03.002
- Discontinuous Shear Thickening without Inertia in Dense Non-Brownian Suspensions, Physical Review Letters, Volume 112 (2014) no. 9 | DOI:10.1103/physrevlett.112.098302
- Micromechanical study of fabric evolution in quasi-static deformation of granular materials, Mechanics of Materials, Volume 44 (2012), p. 120 | DOI:10.1016/j.mechmat.2011.07.008
- Multiscale characterisation of diffuse granular failure, Philosophical Magazine, Volume 92 (2012) no. 36, p. 4547 | DOI:10.1080/14786435.2012.715766
Cité par 33 documents. Sources : Crossref
☆ This study is an extended version of that reported by N.P. Kruyt, L. Rothenburg, Plasticity of granular materials: a structural-mechanics view, in: M. Nakagawa, S. Luding (Eds.), Powders and Grains 2009, in: AIP Conference Proceedings, vol. 1145, 2009, pp. 1073–1076.
Commentaires - Politique