Comptes Rendus
Physical analysis of velocity and temperature cross-correlations in a plane mixing layer using variable temperature hot wire anemometry
Comptes Rendus. Mécanique, Volume 338 (2010) no. 12, pp. 688-697.

Velocity–temperature cross-correlations were investigated in a non-isothermal mixing layer generated by two air flows at different velocities and temperatures. The study focused on the analysis of heat transfer across turbulent free shear flows in air like air curtains or wide wall jets. A new hot wire anemometry technique was used to obtain simultaneous measurements of velocity and temperature at the same location with a single wire. The hot wire was operated following the multiple overheat principle, consisting in reproducing a given sequence comprising several successive steps in the overheat applied to the wire at a frequency of 1000 to 10,000 Hz. The synchronism of the velocity and temperature measurements allowed a fine analysis of the relationship between the fluctuations of the two physical quantities considered. These relationships were first analyzed using a conditional probability density function approach that allowed the description of the evolution of the temperature fluctuation T across the mixing layer associated with both a fully turbulent mixing process and intermittencies. Finally, by splitting the heat flux u(t)×T(t) into four quadrants, classically defined as the contributions of the four possible combinations of the instantaneous values of the fluctuations u(t) and T(t) according to their respective signs, the intermittent part of the heat flux associated with the saddle point ejections was shown to be progressively more dominant in the mixing process evolving along the self-similarity region of the flow.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2010.10.006
Mots-clés : Turbulence, Mixing, Heat flux, Hot wire anemometry, Multiple overheat, Quadrant decomposition, Plane mixing layer

Malick Ndoye 1, 2, 3; E. Dorignac 2; J. Delville 2; G. Arroyo 1, 3

1 Cemagref, UR TERE, 17 Avenue de Cucillé, CS64427, F-35044 Rennes, France
2 Institut PPRIME, CNRS – Université de Poitiers – ENSMA UPR 3346, F-86036 Poitiers, France
3 Université Européenne de Bretagne, Rennes, France
@article{CRMECA_2010__338_12_688_0,
     author = {Malick Ndoye and E. Dorignac and J. Delville and G. Arroyo},
     title = {Physical analysis of velocity and temperature cross-correlations in a plane mixing layer using variable temperature hot wire anemometry},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {688--697},
     publisher = {Elsevier},
     volume = {338},
     number = {12},
     year = {2010},
     doi = {10.1016/j.crme.2010.10.006},
     language = {en},
}
TY  - JOUR
AU  - Malick Ndoye
AU  - E. Dorignac
AU  - J. Delville
AU  - G. Arroyo
TI  - Physical analysis of velocity and temperature cross-correlations in a plane mixing layer using variable temperature hot wire anemometry
JO  - Comptes Rendus. Mécanique
PY  - 2010
SP  - 688
EP  - 697
VL  - 338
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2010.10.006
LA  - en
ID  - CRMECA_2010__338_12_688_0
ER  - 
%0 Journal Article
%A Malick Ndoye
%A E. Dorignac
%A J. Delville
%A G. Arroyo
%T Physical analysis of velocity and temperature cross-correlations in a plane mixing layer using variable temperature hot wire anemometry
%J Comptes Rendus. Mécanique
%D 2010
%P 688-697
%V 338
%N 12
%I Elsevier
%R 10.1016/j.crme.2010.10.006
%G en
%F CRMECA_2010__338_12_688_0
Malick Ndoye; E. Dorignac; J. Delville; G. Arroyo. Physical analysis of velocity and temperature cross-correlations in a plane mixing layer using variable temperature hot wire anemometry. Comptes Rendus. Mécanique, Volume 338 (2010) no. 12, pp. 688-697. doi : 10.1016/j.crme.2010.10.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.10.006/

[1] H.E. Fiedler Transport of heat across a plane turbulent mixing layer, Adv. in Geophys., Volume 18A (1974), pp. 93-109

[2] G.L. Brown; A. Roshko On density effects and large structure in the turbulent mixing layers, J. Fluid Mech., Volume 64 (1974), pp. 775-816

[3] R.G. Batt Turbulent mixing of passive and chemically reacting species in a low speed shear layer, J. Fluid Mech., Volume 82 (1977) no. 1, pp. 53-95

[4] S.M. Masutani; C.T. Bowman The structure of a chemically reacting plane mixing layer, J. Fluid Mech., Volume 172 (1986), pp. 93-126

[5] D.K. Bisset, Numerical simulation of heat transfer in turbulent mixing layers, in: 13th Australasian Fluid Mechanics Conf., 1998, pp. 21–24.

[6] L.M. Pickett; J.B. Ghandi Passive scalar measurements in a planar mixing layer by PLIF of acetone, Exp. Fluids, Volume 31 (2001), pp. 309-318

[7] L.M. Pickett; J.B. Ghandi Passive scalar mixing in a planar shear layer with laminar and turbulent inlet conditions, Phys. Fluids, Volume 14 (2002), pp. 985-998

[8] P.S. Karasso; M.G. Mungal Scalar mixing and reaction in plane liquid shear layers, J. Fluid Mech., Volume 323 (1996), pp. 23-63

[9] M. Ndoye; J. Delville; D. Heitz; G. Arroyo Parameterizable Constant temperature anemometer: a new method for the analysis of velocity–temperature coupling in turbulent heat transfer, Meas. Sci. Technol., Volume 21 (2010) no. 7, pp. 93-126

[10] H.H. Bruun Hot-Wire Anemometry: Principles and Signal Analysis, Oxford University Press Inc., New York, USA, 1995

[11] A. Perry Hot-Wire Anemometry, Clarendon Press, Oxford, UK, 1982

[12] S. Corrsin Extended applications of hot wire anemometer, Rev. Sci. Ins., Volume 18 (1947), pp. 469-471

[13] E. Verollet, Contribution aux méthodes de mesure de turbulence, de vitesse et de température par l'anémométrie à fil chaud, Thèse de Doctorat, Université de Marseille, 1965.

[14] L.S.G. Kovasznay The hot wire anemometer in supersonic flows, J. Aero. Sci., Volume 17 (1950), pp. 565-572

[15] D.A. Walker; W.F. Ng; M.D. Walker Experimental comparison of two hot wire techniques in supersonic flow, AIAA J., Volume 27 (1989), pp. 1074-1080

[16] J. Weiss; H. Knauss; S. Wagner Experimental determination of the free-stream disturbance filed in a short duration supersonic wind tunnel, Exp. Fluids, Volume 35 (2003), pp. 291-302

[17] M. Saez, Contribution à l'étude expérimentale de la convection mixte, Thèse de Doctorat, Université J. Fourier Grenoble 1, 1998.

[18] M. Ndoye, Anémométrie fil chaud à température variable: application à l'étude d'une couche de mélange anisotherme, Thèse de Doctorat, Université de Poitiers, France, 2008.

[19] W.H. Press; S.A. Teutolsky; W.T. Vetterling; B.P. Flannery Numerical Recipes in Fortran: The Art of Scientific Computing, Cambridge University Press, 1992

[20] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML, Supplement of ISO GUM 95, JCGM 101:2008 – Evaluation of measurement data – Supplement 1 to the Guide to the Expression of Uncertainty Measurement – Propagation of distributions using a Monte Carlo method, 2008.

[21] M.M. Koochesfahani; P.E. Dimotakis Mixing and chemical reactions in a turbulent liquid mixing layer, J. Fluid Mech., Volume 170 (1986), pp. 83-112

[22] S.S. Lu; W.W. Willmarth Measurements of the structure of the Reynolds stress in a turbulent boundary layer, J. Fluid Mech., Volume 60 (1973), pp. 481-511

Cited by Sources:

Comments - Policy