This article is a review of the work that we are carrying out to efficiently simulate shallow water flows. In this paper, we focus on the efficient implementation of path-conservative Roe type high-order finite volume schemes to simulate shallow flows that are supposed to be governed by the one-layer or two-layer shallow water systems, formulated under the form of a conservation law with source terms. The implementation of the scheme is carried out on Graphics Processing Units (GPUs), thus achieving a substantial improvement of the speedup with respect to normal CPUs. Finally, some numerical experiments are presented.
Manuel J. Castro 1; Sergio Ortega 1; Marc de la Asunción 2; José M. Mantas 2; José M. Gallardo 1
@article{CRMECA_2011__339_2-3_165_0, author = {Manuel J. Castro and Sergio Ortega and Marc de la Asunci\'on and Jos\'e M. Mantas and Jos\'e M. Gallardo}, title = {GPU computing for shallow water flow simulation based on finite volume schemes}, journal = {Comptes Rendus. M\'ecanique}, pages = {165--184}, publisher = {Elsevier}, volume = {339}, number = {2-3}, year = {2011}, doi = {10.1016/j.crme.2010.12.004}, language = {en}, }
TY - JOUR AU - Manuel J. Castro AU - Sergio Ortega AU - Marc de la Asunción AU - José M. Mantas AU - José M. Gallardo TI - GPU computing for shallow water flow simulation based on finite volume schemes JO - Comptes Rendus. Mécanique PY - 2011 SP - 165 EP - 184 VL - 339 IS - 2-3 PB - Elsevier DO - 10.1016/j.crme.2010.12.004 LA - en ID - CRMECA_2011__339_2-3_165_0 ER -
%0 Journal Article %A Manuel J. Castro %A Sergio Ortega %A Marc de la Asunción %A José M. Mantas %A José M. Gallardo %T GPU computing for shallow water flow simulation based on finite volume schemes %J Comptes Rendus. Mécanique %D 2011 %P 165-184 %V 339 %N 2-3 %I Elsevier %R 10.1016/j.crme.2010.12.004 %G en %F CRMECA_2011__339_2-3_165_0
Manuel J. Castro; Sergio Ortega; Marc de la Asunción; José M. Mantas; José M. Gallardo. GPU computing for shallow water flow simulation based on finite volume schemes. Comptes Rendus. Mécanique, High Performance Computing, Volume 339 (2011) no. 2-3, pp. 165-184. doi : 10.1016/j.crme.2010.12.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.12.004/
[1] A parallel 2D finite volume scheme for solving systems of balance laws with nonconservative products: Application to shallow flows, Comput. Meth. Appl. Mech. Eng., Volume 195 (2006), pp. 2788-2815
[2] Solving shallow-water systems in 2D domains using finite volume methods and multimedia SSE instructions, J. Comput. Appl. Math., Volume 221 (2008), pp. 16-32
[3] Graphics processor units: New prospects for parallel computing, Lecture Notes Comput. Sci. Eng., Volume 51 (2006), pp. 89-121
[4] GPU computing, Proceedings of the IEEE, Volume 96 (2008), pp. 879-899
[5] Visual simulation of shallow-water waves, Simul. Model. Pract. Theory, Volume 13 (2005), pp. 716-726
[6] Simulation of shallow-water systems using graphics processing units, Math. Comput. Simul., Volume 80 (2009), pp. 598-618
[7] A GPU-based simulation of tsunami propagation and inundation, Lecture Notes in Computer Science, Volume 5574 (2009), pp. 593-603
[8] http://www.nvidia.com/object/cuda_home_new.html (NVIDIA, CUDA home page)
[9] Simulation of one-layer shallow water systems on multicore and CUDA architectures, J. Supercomput. (2009) | DOI
[10] M. de la Asunción, J.M. Mantas, M.J. Castro, Programming CUDA-based GPUs to simulate two-layer shallow water flows, Euro-Par 2010, Ischia, Italy.
[11] On the benefits of using GPUs to simulate shallow flows with finite volume schemes, Boletín de la Sociedad Española de Matemática Aplicada, Volume 50 (2010), pp. 27-44
[12] A.R. Brodtkorb, T.R. Hagen, K.-A. Lie, J.R. Natvig, Simulation and visualization of the Saint-Venant system using GPUs, Computing and Visualization in Science, Special issue on Hot Topics in Computational Engineering (2010), , in press. | DOI
[13] High order extension of Roe schemes for two-dimensional nonconservative hyperbolic systems, J. Sci. Comput., Volume 39 (2009), pp. 67-114
[14] Definition and weak stability of nonconservative products, J. Math. Pures Appl., Volume 74 (1995), pp. 483-548
[15] Spaces BV quasilinear equations, Math. USSR Sbornik, Volume 73 (1967), pp. 255-302
[16] Self-adjusting grid methods for one-dimensional hyperbolic conservation laws, J. Comp. Phys., Volume 50 (1983), pp. 235-269
[17] Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes, Jour. Comp. Phys., Volume 3227 (2008), pp. 8107-8129
[18] On some difficulties of the numerical approximation of nonconservative hyperbolic systems, Boletín SEMA, Volume 47 (2009), pp. 23-52
[19] Why nonconservative schemes converge to wrong solutions: error analysis, Math. Comput., Volume 62 (1994), pp. 497-530
[20] M.L. Muñoz, C. Parés, On the convergence and well-balanced property of path-conservative numerical schemes for systems of balance laws, J. Sci. Comp. (2010), , in press. | DOI
[21] Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows, J. Comput. Phys., Volume 213 (2006), pp. 474-499
[22] G. Walz, Romberg type cubature over arbitrary triangles, Mannheimer Mathem, Manuskripte Nr. 225, Mannhein, 1997.
[23] Efficient implementation of essentially non-oscillatory shock capturing schemes, J. Comput. Phys., Volume 77 (1998), pp. 439-471
[24] J.M. Gallardo, S. Ortega, M. de la Asunción, J.M. Mantas, Two-dimensional compact third-order polynomial reconstructions. Solving nonconservative hyperbolic systems using GPUs, J. Sci. Comput. (2010), submitted for publication.
[25] http://developer.nvidia.com/object/cuda_3_0_downloads.html (NVIDIA, NVIDIA CUDA Programming Guide Version 3.0, 2010)
[26] http://eigen.tuxfamily.org (Eigen 2.0.15)
[27] Using OpenMP: Portable Shared Memory Parallel Programing, The MIT Press, 2007
[28] http://www.netlib.org/eispack (EISPACK)
[29] E.D. Fernández Nieto, M.J. Castro, C. Parés, IFCP Riemann solver for the two-layer shallow-water system, J. Sci. Comput. (2010), submitted for publication.
Cited by Sources:
Comments - Policy