Comptes Rendus
Daubechies wavelets for high performance electronic structure calculations: The BigDFT project
Comptes Rendus. Mécanique, Volume 339 (2011) no. 2-3, pp. 149-164.

In this contribution we will describe in detail a Density Functional Theory method based on a Daubechies wavelets basis set, named BigDFT. We will see that, thanks to wavelet properties, this code shows high systematic convergence properties, very good performances and an excellent efficiency for parallel calculations. BigDFT code operation are also well-suited for GPU acceleration. We will discuss how the problematic of fruitfully benefit of this new technology can be match with the needs of robustness and flexibility of a complex code like BigDFT. This work may be of interest not only for expert in electronic structure calculations, but may also provide feedback to the wider community of high performance scientific computing.

Dans cet article nous allons décrire en détail BigDFT, une mise en oeuvre de la Théorie de la Fonctionnelle de la Densité basée sur les ondelettes de Daubechies. Nous verrons que, grâce aux propriétés des ondelettes, ce code présente une bonne convergence systématique, de très bonnes performances et un excellent passage à l'échelle lors de calculs distribués. Les opérations constituantes de BigDFT sont également bien adaptée aux accélérateurs de type GPU. Nous analyserons comment bénéficier efficacement de cette nouvelle technologie tout en respectant les contraintes de robustesse et de flexibilité d'un programme de la complexité de BigDFT. Ce travail peut intéresser non seulement les experts en calcul des structures électroniques, mais également constituer un retour d'expérience pour la communauté plus large du calcul scientifique à hautes performances.

Published online:
DOI: 10.1016/j.crme.2010.12.003
Keywords: Computer science, Density Functional Theory, Daubechies wavelets, BigDFT
Mot clés : Informatique, Théorie de la Fonctionnelle de la Densité, Ondelettes de Daubechies, BigDFT

Luigi Genovese 1; Brice Videau 2; Matthieu Ospici 3, 4, 2; Thierry Deutsch 2; Stefan Goedecker 5; Jean-François Méhaut 3

1 European Synchrotron Radiation Facility, 6, rue Horowitz, BP 220, 38043 Grenoble cedex, France
2 Laboratoire de simulation atomistique (L_Sim), SP2M/INAC/CEA, 17, avenue des Martyrs, 38054 Grenoble cedex, France
3 Université Joseph-Fourier, laboratoire d'informatique de Grenoble – INRIA, BP 53, 38041 Grenoble cedex 9, France
4 Bull SAS, 1, rue de Provence, 38130 Echirolles, France
5 Institut für Physik, Universität Basel, Klingelbergstr. 82, CH-4056 Basel, Switzerland
@article{CRMECA_2011__339_2-3_149_0,
     author = {Luigi Genovese and Brice Videau and Matthieu Ospici and Thierry Deutsch and Stefan Goedecker and Jean-Fran\c{c}ois M\'ehaut},
     title = {Daubechies wavelets for high performance electronic structure calculations: {The} {BigDFT} project},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {149--164},
     publisher = {Elsevier},
     volume = {339},
     number = {2-3},
     year = {2011},
     doi = {10.1016/j.crme.2010.12.003},
     language = {en},
}
TY  - JOUR
AU  - Luigi Genovese
AU  - Brice Videau
AU  - Matthieu Ospici
AU  - Thierry Deutsch
AU  - Stefan Goedecker
AU  - Jean-François Méhaut
TI  - Daubechies wavelets for high performance electronic structure calculations: The BigDFT project
JO  - Comptes Rendus. Mécanique
PY  - 2011
SP  - 149
EP  - 164
VL  - 339
IS  - 2-3
PB  - Elsevier
DO  - 10.1016/j.crme.2010.12.003
LA  - en
ID  - CRMECA_2011__339_2-3_149_0
ER  - 
%0 Journal Article
%A Luigi Genovese
%A Brice Videau
%A Matthieu Ospici
%A Thierry Deutsch
%A Stefan Goedecker
%A Jean-François Méhaut
%T Daubechies wavelets for high performance electronic structure calculations: The BigDFT project
%J Comptes Rendus. Mécanique
%D 2011
%P 149-164
%V 339
%N 2-3
%I Elsevier
%R 10.1016/j.crme.2010.12.003
%G en
%F CRMECA_2011__339_2-3_149_0
Luigi Genovese; Brice Videau; Matthieu Ospici; Thierry Deutsch; Stefan Goedecker; Jean-François Méhaut. Daubechies wavelets for high performance electronic structure calculations: The BigDFT project. Comptes Rendus. Mécanique, Volume 339 (2011) no. 2-3, pp. 149-164. doi : 10.1016/j.crme.2010.12.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.12.003/

[1] W. Kohn; L.J. Sham Phys. Rev., 140 (1965), p. A1133

[2] X. Gonze; B. Amadon; P.-M. Anglade; J.-M. Beuken; F. Bottin; P. Boulanger; F. Bruneval; D. Caliste; R. Caracas; M. Coté; T. Deutsch; L. Genovese; Ph. Ghosez; M. Giantomassi; S. Goedecker; D. Hamann; P. Hermet; F. Jollet; G. Jomard; S. Leroux; M. Mancini; S. Mazevet; M. Oliveira; T. Rangel; Y. Pouillon; G.-M. Rignanese; D. Sangalli; R. Shaltaf; M. Torrent; M. Verstraete; G. Zerah; J. Zwanziger ABINIT: first-principles approach to material and nanosystem properties, Comput. Phys. Comm., Volume 180 (2009), pp. 2582-2615

[3] L. Genovese; et al.; L. Genovese et al. J. Chem. Phys., 129 (2008), p. 014109 http://inac.cea.fr/sp2m/L_Sim/BigDFT

[4] I. Daubechies Ten Lectures on Wavelets, SIAM, Philadelphia, 1992

[5] S. Goedecker; M. Teter; J. Hutter Phys. Rev. B, 54 (1996), p. 1703

[6] C. Hartwigsen; S. Goedecker; J. Hutter Phys. Rev. B, 58 (1998), p. 3641

[7] M. Krack Theor. Chem. Acc., 114 (2005), p. 145

[8] S. Goedecker Wavelets and Their Application for the Solution of Partial Differential Equations, Presses Polytechniques Universitaires Romandes, Lausanne, Switzerland, 1998 (ISBN: 2-88074-398-2)

[9] G. Beylkin SIAM J. Numer. Anal., 6 (1992), p. 1716

[10] A.I. Neelov; S. Goedecker J. Comput. Phys., 217 (2006), pp. 312-339

[11] G. Deslauriers; S. Dubuc Constr. Approx., 5 (1989), p. 49

[12] L. Genovese; T. Deutsch; A. Neelov; S. Goedecker; G. Beylkin Efficient solution of Poisson's equation with free boundary conditions, J. Chem. Phys., Volume 125 (2006), p. 074105

[13] L. Genovese; T. Deutsch; S. Goedecker Efficient and accurate three-dimensional Poisson solver for surface problems, J. Chem. Phys., Volume 127 (2007), p. 054704

[14] S. Goedecker; A. Hoisie Performance Optimization of Numerically Intensive Codes, SIAM Publishing Company, Philadelphia, USA, 2001 (ISBN: 0-89871-484-2)

[15] CPMD Version 3.8: developed by J. Hutter, A. Alavi, T. Deutsch, M. Bernasconi, S. Goedecker, D. Marx, M. Tuckerman, M. Parrinello, Max-Planck-Institut für Festkörperforschung and IBM Zürich Research Laboratory, 1995–1999.

[16] J. Yang et al. J. Comput. Phys., 221 (2007), p. 779

[17] A. Anderson et al. Comput. Phys. Comm., 177 (2007), p. 298

[18] D. Göddeke et al. Parallel Comput., 33 (2007), p. 10685

[19] www.amd.com/stream (ATI stream technology)

[20] http://www.nvidia.com/object/cuda_home.html (NVidia CUDA Programming Guide, version 3.1, see)

[21] Khronos Group The OpenCL Standard, 2009 http://www.khronos.org/opencl/

[22] www.apc.com/ (APC–Metered Rack PDU)

[23] Markus Püschel; José M.F. Moura; Jeremy Johnson; David Padua; Manuela Veloso; Bryan Singer; Jianxin Xiong; Franz Franchetti; Aca Gacic; Yevgen Voronenko; Kang Chen; Robert W. Johnson; Nick Rizzolo SPIRAL: code generation for DSP transforms, Proc. IEEE (special issue on Program Generation, Optimization, and Adaptation), Volume 93 (2005) no. 2, pp. 232-275

[24] Matteo Frigo; Steven G. Johnson The design and implementation of FFTW3, Proc. IEEE (special issue on Program Generation, Optimization, and Platform Adaptation), Volume 93 (2005) no. 2, pp. 216-231 (Invited paper)

Cited by Sources:

Comments - Policy