This Note presents an analytical solution of two-dimensional axisymmetric wakes valid in the development region, before the ultimate equilibrium state. Based on the boundary layer equations in polar coordinates, assuming a small velocity defect, the problem reduces to a linear diffusive equation and can be expressed as an eigenvalue problem. Then a complete set of eigenfunctions is analytically obtained, which are damped and evolve self-similarly in space. The first mode corresponds to the Schlichtingʼs solution, in agreement with the downstream asymptotic behavior.
Accepté le :
Publié le :
Damien Biau 1
@article{CRMECA_2011__339_4_245_0, author = {Damien Biau}, title = {Exact self-similar solutions for axisymmetric wakes}, journal = {Comptes Rendus. M\'ecanique}, pages = {245--249}, publisher = {Elsevier}, volume = {339}, number = {4}, year = {2011}, doi = {10.1016/j.crme.2011.01.003}, language = {en}, }
Damien Biau. Exact self-similar solutions for axisymmetric wakes. Comptes Rendus. Mécanique, Volume 339 (2011) no. 4, pp. 245-249. doi : 10.1016/j.crme.2011.01.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.01.003/
[1] On the effect of the internal friction of fluids on the motion of pendulums, Trans. Cambridge Philos. Trans., Volume 9 (1851), pp. 8-106
[2] Second approximations to viscous fluid motion, Q. J. Math., Volume 23 (1889), pp. 143-152
[3] Über die Stokesʼsche Formel, und über eine verwandte Aufgabe in der Hydrodynamik, Ark. Math. Astron. Fys., Volume 6 (1910), p. 29
[4] Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder, J. Fluid Mech., Volume 2 (1957), pp. 237-262
[5] The Structure of Turbulent Shear Flows, Cambridge University Press, 1956
[6] Vortex models based on similarity solutions of the two-dimensional diffusion equation, Phys. Fluids, Volume 16 (2004), pp. 3997-4011
[7] On the large-time asymptotics of the diffusion equation on infinite domains, J. Engrg. Math., Volume 24 (1990), pp. 213-236
[8] Axisymmetric wake and jet in decelerating streams, Z. Angew. Math. Phys., Volume 53 (2002), pp. 35-47
[9] Boundary Layer Theory, McGraw–Hill, 1955
[10] W.K. George, The self-preservation of turbulent flows and its relation to initial conditions and coherent structures, in: Advances in Turbulence, 1989, pp. 39–73.
[11] Turbulence memory in self-preserving wakes, J. Fluid Mech., Volume 89 (1978), pp. 589-606
[12] Reynolds-number-independent instability of the boundary layer over a flat surface, J. Fluid Mech., Volume 327 (1996), pp. 101-115
Cité par Sources :
Commentaires - Politique