Comptes Rendus
Une méthode particulaire pour résoudre lʼéquation de Richards
[A particle method for solving Richardsʼ equation]
Comptes Rendus. Mécanique, Volume 339 (2011) no. 4, pp. 257-261.

Under some specific assumptions, the flow of the water in unsaturated porous media can be represented by the Richards equation. However the strong non-linearity of the Richards equation constitutes a difficult obstacle for such simulations. This work presents a complete solution of the problem based on two alternative deterministic schemes for the particle methods, Particle Strength Exchange and Diffusion Velocity. These two methods are used to compute the motion of an initially spherical wet region embedded in an otherwise low humidity zone. These results are compared to that of the finite element code NAPL. It is shown that each method provide a useful alternative to more classical grid methods.

Sous certaines hypothèses, lʼécoulement de lʼeau dans des sols partiellement saturés peut être décrit par lʼéquation de Richards. Ce travail présente une solution complète du problème basée sur deux méthodes particulaires déterministes classiques, Particle Strength Exchange et Vitesse de Diffusion. Ces deux méthodes sont appliquées au probléme de la migration dʼune bulle dʼhumidité dans un milieu poreux dʼhumidité faible. Les résultats sont comparés à ceux fournis par le code NAPL et montrent que chacune de ces méthodes est une alternative intéressante aux méthodes classiques avec maillage.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2011.01.005
Mots-clés : Milieux poreux, Milieux poreux non saturés, Équation de Richards, Méthode particulaire
Keywords: Porous media, Unsaturated porous media, Richardsʼ equation, Particle method

Anthony Beaudoin 1; Serge Huberson 2; Elie Rivoalen 3

1 Laboratoire ondes et milieux complexes, université du Havre, 25, rue Philippe-Lebon, BP 540, 76058 Le Havre cedex, France
2 Laboratoire dʼétudes aérodynamiques, université de Poitiers-ENSMA-CNRS, boulevard Marie-et-Pierre-Curie, BP 30179, 86962 Futuroscope Chasseneuil cedex, France
3 Laboratoire de mécanique de Rouen, INSA de Rouen, BP 08, 76801 Saint Etienne du Rouvray, France
@article{CRMECA_2011__339_4_257_0,
     author = {Anthony Beaudoin and Serge Huberson and Elie Rivoalen},
     title = {Une m\'ethode particulaire pour r\'esoudre l'\'equation de {Richards}},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {257--261},
     publisher = {Elsevier},
     volume = {339},
     number = {4},
     year = {2011},
     doi = {10.1016/j.crme.2011.01.005},
     language = {fr},
}
TY  - JOUR
AU  - Anthony Beaudoin
AU  - Serge Huberson
AU  - Elie Rivoalen
TI  - Une méthode particulaire pour résoudre lʼéquation de Richards
JO  - Comptes Rendus. Mécanique
PY  - 2011
SP  - 257
EP  - 261
VL  - 339
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2011.01.005
LA  - fr
ID  - CRMECA_2011__339_4_257_0
ER  - 
%0 Journal Article
%A Anthony Beaudoin
%A Serge Huberson
%A Elie Rivoalen
%T Une méthode particulaire pour résoudre lʼéquation de Richards
%J Comptes Rendus. Mécanique
%D 2011
%P 257-261
%V 339
%N 4
%I Elsevier
%R 10.1016/j.crme.2011.01.005
%G fr
%F CRMECA_2011__339_4_257_0
Anthony Beaudoin; Serge Huberson; Elie Rivoalen. Une méthode particulaire pour résoudre lʼéquation de Richards. Comptes Rendus. Mécanique, Volume 339 (2011) no. 4, pp. 257-261. doi : 10.1016/j.crme.2011.01.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.01.005/

[1] D. Crevasier; A. Chanzy; M. Voltz Evaluation of the Ross fast solution of Richardsʼ equation in unfavourable conditions for standard finite element methods, Adv. Water Res., Volume 32 (2009), pp. 936-947

[2] C.T. Miller; C. Abhishek; M.W. Farthing A spatially and temporally adaptive solution of Richards equation, Adv. Water Res., Volume 29 (2006), pp. 525-545

[3] P. Salamon; D. Fernandez-Garcia; J.J. Gomez-Hernandez A review and numerical assessment of the random walk particle tracking method, J. Contaminant Hydrol., Volume 87 (2006), pp. 277-305

[4] L.F. Rossi A high order lagrangian scheme for flow through unsaturated porous media, Contemp. Math., Volume 295 (2000), pp. 1-12

[5] P. Degond; S. Mas-Gallic The weighted particle method for convection diffusion equation, Part 2: The anisotropic case, Math. Comput., Volume 53 (1989), p. 509

[6] P. Degond; F.J. Mustieles A deterministic approximation of diffusion equations using particles, SIAM J. Sci. Stat. Comput., Volume 11 (1990), pp. 293-310

[7] L.A. Richards Capillary conduction of liquids through porous medium, Physics, Volume 1 (1931), pp. 318-333

[8] M.T. Van Genuchten A closed form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., Volume 44 (1980), pp. 892-898

[9] J. Guarnaccia, G. Pinder, M. Fishman, T.E. Short, NAPL simulator documentation, EPA/600/R-97/102, October 1997.

Cited by Sources:

Comments - Policy