On présente un code numérique dʼinteractions fluide–structure pour résoudre le problème de coup de bélier en conduites à paroi mince. La conduite est modélisée par la théorie des poutres planes de Bernoulli–Euler en vibrations longitudinale et transversale. Ce code est le couplage de la méthode des éléments finis associée à lʼalgorithme de Newmark pour le mouvement de la paroi de la conduite et, pour le fluide, à la méthode des caractéristiques. Contrairement à la théorie classique, ce code permet dʼillustrer les effets secondaires dʼinteraction fluide–structure affectant les paramètres de coup de bélier dans les cas de conduite élastique et viscoélastique.
We present a numerical code for fluid–structure interactions to solve the problem of waterhammer in pipes with thin walls. The pipe is modeled by planar beams theory of Bernoulli–Euler in longitudinal and transverse vibrations. This code is the coupling of the finite element method combined with the Newmark algorithm for movement of the pipe wall, and, for the fluid, the method of characteristics. Unlike the classical theory, this code illustrates the side effects of fluid–structure interaction affecting parameters of waterhammer in elastic and viscoelastic pipe.
Accepté le :
Publié le :
Mots-clés : Mécanique des fluides numérique, Coup de bélier, Fluides–structures, Méthodes des caractéristiques, Éléments finis
El Hassan Achouyab 1 ; Bennasser Bahrar 2
@article{CRMECA_2011__339_4_262_0, author = {El Hassan Achouyab and Bennasser Bahrar}, title = {Numerical modeling of phenomena of waterhammer using a model of fluid{\textendash}structure interaction}, journal = {Comptes Rendus. M\'ecanique}, pages = {262--269}, publisher = {Elsevier}, volume = {339}, number = {4}, year = {2011}, doi = {10.1016/j.crme.2011.02.003}, language = {en}, }
TY - JOUR AU - El Hassan Achouyab AU - Bennasser Bahrar TI - Numerical modeling of phenomena of waterhammer using a model of fluid–structure interaction JO - Comptes Rendus. Mécanique PY - 2011 SP - 262 EP - 269 VL - 339 IS - 4 PB - Elsevier DO - 10.1016/j.crme.2011.02.003 LA - en ID - CRMECA_2011__339_4_262_0 ER -
El Hassan Achouyab; Bennasser Bahrar. Numerical modeling of phenomena of waterhammer using a model of fluid–structure interaction. Comptes Rendus. Mécanique, Volume 339 (2011) no. 4, pp. 262-269. doi : 10.1016/j.crme.2011.02.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.02.003/
[1] Waterhammer in Hydraulics and Waves Surges in Electricity, John Wiley and Sons, Inc., New York, 1961
[2] Fluid Transients, McGraw-Hill, 1978
[3] Ecoulements non permanent en conduite viscoélastique – Coup de bélier, J. Hydraulic Res., Volume 17 (1979), pp. 217-229
[4] M.S. Güney, Waterhammer in viscoelastic pipes where cross section parameters are time dependent, in: Proceedings of the 4th International Conference on Pressure Surges, BHRA Bath, United Kingdom, 1983, pp. 189–209.
[5] R.S. Otwell, The effect of elbow restraint on pressure transient, Ph.D. dissertation, Michigan State University, 1984.
[6] The effect of elbow restraint on pressure transients, ASME, Volume 107 ( September 1985 ), pp. 402-406
[7] Numerical and experimental investigation of transient pipe flow, J. Hydraulic Res., Volume 32 (1994) no. 5
[8] B. Bahrar, E. Rieutord, R. Morel, Z. Gamal, Modélisation du phénomène de coup de bélier avec prise en compte du comportement réel de la conduite, in: La Houille Blanche, No 1, 1998, pp. 18–25.
[9] B. Bahrar, E. Rieutord, R. Morel, Influence de la viscoélasticité de la paroi sur les phénomènes de coup de bélier, in: La Houille blanche, No 1, 1998, pp. 26–32.
[10] Fluid transients and fluid structure interaction in flexible liquid filled piping, ASME Appl. Mech. Rev., Volume 54 (2001) no. 5, pp. 455-481
[11] Dynamics of tubular cantilevers conveying fluid, J. Mech. Engrg. Sci., Volume 12 (1970), pp. 85-103
[12] Fluid Interaction, Slender Structures and Axial Flow, vol. I, Academic Press, London, 1998
[13] Theory of Viscoelasticity: An Introduction, Academic Press, 1971
[14] Methods of Mathematical Physics, vols. I and II, Interscience Publishers, New York, 1962
[15] Programming the Dynamic Analysis of Structures, Spon Press, New York, 2002
[16] Modélisation des structures par éléments finis, Hermès, 1990
[17] Frequency dependent friction in transient pipe flow, ASME J. Basic Engrg. ( March 1968 ), pp. 109-115
[18] Velocity profiles and unsteady pipe friction in transient flow, J. Water Resour. Planning Mgmt. ASCE, Volume 126 (2000) no. 4, pp. 236-244
- Parametric finite element modeling and topology optimization for stress reduction of spatial pipeline based on beam/solid element coupling, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Volume 239 (2025) no. 8, p. 2864 | DOI:10.1177/09544062241305520
- An analysis of fluid–structure interaction coupling mechanisms in liquid-filled viscoelastic pipes subject to fast transients, Journal of Fluids and Structures, Volume 121 (2023), p. 103924 | DOI:10.1016/j.jfluidstructs.2023.103924
- Research on Abnormal Vibration and Vibration Reduction Measures of a Natural Gas Compressor Station: A Case Study of the JYG Compressor Station, Energy Fuels, Volume 36 (2022) no. 2, p. 897 | DOI:10.1021/acs.energyfuels.1c03849
- Frequency Domain Analysis of Fluid–Structure Interaction in Aircraft Hydraulic Pipe with Complex Constraints, Processes, Volume 10 (2022) no. 6, p. 1161 | DOI:10.3390/pr10061161
- Fluid-Structure Interaction Analysis of Aircraft Hydraulic Pipe with Complex Constraints Based on Discrete Time Transfer Matrix Method, Applied Sciences, Volume 11 (2021) no. 24, p. 11918 | DOI:10.3390/app112411918
- Comparative Analysis of Longitudinal and Transverse Vibration Characteristics of Ocean Mining Pipe, Shock and Vibration, Volume 2021 (2021) no. 1 | DOI:10.1155/2021/5546371
- Analysis on longitudinal vibration law of deep sea stepped mining pipe, AIP Advances, Volume 10 (2020) no. 12 | DOI:10.1063/5.0032731
- Fluid-structure interaction during water hammer in a pipeline with different performance mechanisms of viscoelastic supports, Journal of Sound and Vibration, Volume 487 (2020), p. 115527 | DOI:10.1016/j.jsv.2020.115527
- Analysis and Research on Longitudinal Vibration Characteristics of Deep Sea Mining Pipe Based on Finite Element Method, Mathematical Problems in Engineering, Volume 2020 (2020), p. 1 | DOI:10.1155/2020/8219794
- Investigation of viscoelastic effects on transient flow in a relatively long PE100 pipe, Journal of Fluids and Structures, Volume 80 (2018), p. 370 | DOI:10.1016/j.jfluidstructs.2018.04.008
- Extended Bubble Cavitation Model to predict water hammer in viscoelastic pipelines, Journal of Physics: Conference Series, Volume 1101 (2018), p. 012046 | DOI:10.1088/1742-6596/1101/1/012046
- Fluid–structure interaction with viscoelastic supports during waterhammer in a pipeline, Journal of Fluids and Structures, Volume 54 (2015), p. 215 | DOI:10.1016/j.jfluidstructs.2014.10.016
- Straightforward Transient-Based Approach for the Creep Function Determination in Viscoelastic Pipes, Journal of Hydraulic Engineering, Volume 140 (2014) no. 12 | DOI:10.1061/(asce)hy.1943-7900.0000929
- Waterhammer modelling of viscoelastic pipes with a time-dependent Poisson's ratio, Journal of Fluids and Structures, Volume 43 (2013), p. 164 | DOI:10.1016/j.jfluidstructs.2013.08.013
- Fluid–structure interaction with pipe-wall viscoelasticity during water hammer, Journal of Fluids and Structures, Volume 28 (2012), p. 434 | DOI:10.1016/j.jfluidstructs.2011.11.001
Cité par 15 documents. Sources : Crossref
Commentaires - Politique