Comptes Rendus
Numerical modeling of phenomena of waterhammer using a model of fluid–structure interaction
Comptes Rendus. Mécanique, Volume 339 (2011) no. 4, pp. 262-269.

On présente un code numérique dʼinteractions fluide–structure pour résoudre le problème de coup de bélier en conduites à paroi mince. La conduite est modélisée par la théorie des poutres planes de Bernoulli–Euler en vibrations longitudinale et transversale. Ce code est le couplage de la méthode des éléments finis associée à lʼalgorithme de Newmark pour le mouvement de la paroi de la conduite et, pour le fluide, à la méthode des caractéristiques. Contrairement à la théorie classique, ce code permet dʼillustrer les effets secondaires dʼinteraction fluide–structure affectant les paramètres de coup de bélier dans les cas de conduite élastique et viscoélastique.

We present a numerical code for fluid–structure interactions to solve the problem of waterhammer in pipes with thin walls. The pipe is modeled by planar beams theory of Bernoulli–Euler in longitudinal and transverse vibrations. This code is the coupling of the finite element method combined with the Newmark algorithm for movement of the pipe wall, and, for the fluid, the method of characteristics. Unlike the classical theory, this code illustrates the side effects of fluid–structure interaction affecting parameters of waterhammer in elastic and viscoelastic pipe.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2011.02.003
Keywords: Computational fluid mechanics, Waterhammer, Fluid–structure, Methods of characteristics, Finite elements
Mots-clés : Mécanique des fluides numérique, Coup de bélier, Fluides–structures, Méthodes des caractéristiques, Éléments finis

El Hassan Achouyab 1 ; Bennasser Bahrar 2

1 Laboratoire de mécanique & énergétique, faculté des sciences, Rabat, Morocco
2 Groupe de mécanique des fluides, énergétique & environnement, ENSET, université Hassan II Mohammadia, Morocco
@article{CRMECA_2011__339_4_262_0,
     author = {El Hassan Achouyab and Bennasser Bahrar},
     title = {Numerical modeling of phenomena of waterhammer using a model of fluid{\textendash}structure interaction},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {262--269},
     publisher = {Elsevier},
     volume = {339},
     number = {4},
     year = {2011},
     doi = {10.1016/j.crme.2011.02.003},
     language = {en},
}
TY  - JOUR
AU  - El Hassan Achouyab
AU  - Bennasser Bahrar
TI  - Numerical modeling of phenomena of waterhammer using a model of fluid–structure interaction
JO  - Comptes Rendus. Mécanique
PY  - 2011
SP  - 262
EP  - 269
VL  - 339
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2011.02.003
LA  - en
ID  - CRMECA_2011__339_4_262_0
ER  - 
%0 Journal Article
%A El Hassan Achouyab
%A Bennasser Bahrar
%T Numerical modeling of phenomena of waterhammer using a model of fluid–structure interaction
%J Comptes Rendus. Mécanique
%D 2011
%P 262-269
%V 339
%N 4
%I Elsevier
%R 10.1016/j.crme.2011.02.003
%G en
%F CRMECA_2011__339_4_262_0
El Hassan Achouyab; Bennasser Bahrar. Numerical modeling of phenomena of waterhammer using a model of fluid–structure interaction. Comptes Rendus. Mécanique, Volume 339 (2011) no. 4, pp. 262-269. doi : 10.1016/j.crme.2011.02.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.02.003/

[1] L. Bergeron Waterhammer in Hydraulics and Waves Surges in Electricity, John Wiley and Sons, Inc., New York, 1961

[2] E.B. Wylie; V.L. Streeter Fluid Transients, McGraw-Hill, 1978

[3] E. Rieutord; A. Blanchard Ecoulements non permanent en conduite viscoélastique – Coup de bélier, J. Hydraulic Res., Volume 17 (1979), pp. 217-229

[4] M.S. Güney, Waterhammer in viscoelastic pipes where cross section parameters are time dependent, in: Proceedings of the 4th International Conference on Pressure Surges, BHRA Bath, United Kingdom, 1983, pp. 189–209.

[5] R.S. Otwell, The effect of elbow restraint on pressure transient, Ph.D. dissertation, Michigan State University, 1984.

[6] D.C. Wiggert; R.S. Otwell; F.J. Hatfield The effect of elbow restraint on pressure transients, ASME, Volume 107 ( September 1985 ), pp. 402-406

[7] M.H. Chaudhry; S. Walter; A.S. Elansary Numerical and experimental investigation of transient pipe flow, J. Hydraulic Res., Volume 32 (1994) no. 5

[8] B. Bahrar, E. Rieutord, R. Morel, Z. Gamal, Modélisation du phénomène de coup de bélier avec prise en compte du comportement réel de la conduite, in: La Houille Blanche, No 1, 1998, pp. 18–25.

[9] B. Bahrar, E. Rieutord, R. Morel, Influence de la viscoélasticité de la paroi sur les phénomènes de coup de bélier, in: La Houille blanche, No 1, 1998, pp. 26–32.

[10] D.C. Wiggert; A.S. Tijsseling Fluid transients and fluid structure interaction in flexible liquid filled piping, ASME Appl. Mech. Rev., Volume 54 (2001) no. 5, pp. 455-481

[11] M.P. Païdoussis Dynamics of tubular cantilevers conveying fluid, J. Mech. Engrg. Sci., Volume 12 (1970), pp. 85-103

[12] M.P. Païdoussis Fluid Interaction, Slender Structures and Axial Flow, vol. I, Academic Press, London, 1998

[13] R.M. Christensen Theory of Viscoelasticity: An Introduction, Academic Press, 1971

[14] A.R. Courant; D. Hilbert Methods of Mathematical Physics, vols. I and II, Interscience Publishers, New York, 1962

[15] P. Bhatt Programming the Dynamic Analysis of Structures, Spon Press, New York, 2002

[16] J.L. Batoz; G. Dhatt Modélisation des structures par éléments finis, Hermès, 1990

[17] W. Zielke Frequency dependent friction in transient pipe flow, ASME J. Basic Engrg. ( March 1968 ), pp. 109-115

[18] B. Brunone; B. Karney; M. Mercarelli; M. Ferrante Velocity profiles and unsteady pipe friction in transient flow, J. Water Resour. Planning Mgmt. ASCE, Volume 126 (2000) no. 4, pp. 236-244

  • Wenhao Ji; Wei Sun; Hongwei Ma; Yu Zhang; Dong Wang Parametric finite element modeling and topology optimization for stress reduction of spatial pipeline based on beam/solid element coupling, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Volume 239 (2025) no. 8, p. 2864 | DOI:10.1177/09544062241305520
  • Douglas Monteiro Andrade; Felipe Bastos de Freitas Rachid; Arris Sieno Tijsseling An analysis of fluid–structure interaction coupling mechanisms in liquid-filled viscoelastic pipes subject to fast transients, Journal of Fluids and Structures, Volume 121 (2023), p. 103924 | DOI:10.1016/j.jfluidstructs.2023.103924
  • Enbin Liu; Dianpeng Lian; He Zheng; Zhongya Su; Qikun Chen Research on Abnormal Vibration and Vibration Reduction Measures of a Natural Gas Compressor Station: A Case Study of the JYG Compressor Station, Energy Fuels, Volume 36 (2022) no. 2, p. 897 | DOI:10.1021/acs.energyfuels.1c03849
  • Haihai Gao; Changhong Guo; Lingxiao Quan; Shuai Wang Frequency Domain Analysis of Fluid–Structure Interaction in Aircraft Hydraulic Pipe with Complex Constraints, Processes, Volume 10 (2022) no. 6, p. 1161 | DOI:10.3390/pr10061161
  • Haihai Gao; Changhong Guo; Lingxiao Quan Fluid-Structure Interaction Analysis of Aircraft Hydraulic Pipe with Complex Constraints Based on Discrete Time Transfer Matrix Method, Applied Sciences, Volume 11 (2021) no. 24, p. 11918 | DOI:10.3390/app112411918
  • Qiang Liu; Lin-jing Xiao; Zengshun Chen Comparative Analysis of Longitudinal and Transverse Vibration Characteristics of Ocean Mining Pipe, Shock and Vibration, Volume 2021 (2021) no. 1 | DOI:10.1155/2021/5546371
  • Lin-jing Xiao; Qiang Liu; Ji-ming Lu Analysis on longitudinal vibration law of deep sea stepped mining pipe, AIP Advances, Volume 10 (2020) no. 12 | DOI:10.1063/5.0032731
  • Rahil sadat Hosseini; Ahmad Ahmadi; Roohollah Zanganeh Fluid-structure interaction during water hammer in a pipeline with different performance mechanisms of viscoelastic supports, Journal of Sound and Vibration, Volume 487 (2020), p. 115527 | DOI:10.1016/j.jsv.2020.115527
  • Qiang Liu; Linjing Xiao Analysis and Research on Longitudinal Vibration Characteristics of Deep Sea Mining Pipe Based on Finite Element Method, Mathematical Problems in Engineering, Volume 2020 (2020), p. 1 | DOI:10.1155/2020/8219794
  • Mohamed Amine Guidara; Lamjed Hadj Taieb; Christian Schmitt; Ezzeddine Hadj Taieb; Zitouni Azari Investigation of viscoelastic effects on transient flow in a relatively long PE100 pipe, Journal of Fluids and Structures, Volume 80 (2018), p. 370 | DOI:10.1016/j.jfluidstructs.2018.04.008
  • Kamil Urbanowicz; Mateusz Firkowski Extended Bubble Cavitation Model to predict water hammer in viscoelastic pipelines, Journal of Physics: Conference Series, Volume 1101 (2018), p. 012046 | DOI:10.1088/1742-6596/1101/1/012046
  • Roohollah Zanganeh; Ahmad Ahmadi; Alireza Keramat Fluid–structure interaction with viscoelastic supports during waterhammer in a pipeline, Journal of Fluids and Structures, Volume 54 (2015), p. 215 | DOI:10.1016/j.jfluidstructs.2014.10.016
  • Alireza Keramat; Ali Haghighi Straightforward Transient-Based Approach for the Creep Function Determination in Viscoelastic Pipes, Journal of Hydraulic Engineering, Volume 140 (2014) no. 12 | DOI:10.1061/(asce)hy.1943-7900.0000929
  • Alireza Keramat; Arash Ghaffarian Kolahi; Ahmad Ahmadi Waterhammer modelling of viscoelastic pipes with a time-dependent Poisson's ratio, Journal of Fluids and Structures, Volume 43 (2013), p. 164 | DOI:10.1016/j.jfluidstructs.2013.08.013
  • A. Keramat; A.S. Tijsseling; Q. Hou; A. Ahmadi Fluid–structure interaction with pipe-wall viscoelasticity during water hammer, Journal of Fluids and Structures, Volume 28 (2012), p. 434 | DOI:10.1016/j.jfluidstructs.2011.11.001

Cité par 15 documents. Sources : Crossref

Commentaires - Politique