A thermodynamic theory is developed for the thermophoresis of dilute suspensions of charged colloid particles in electrolyte solutions. The calculation of relevant thermodynamic parameters using statistical mechanics is carried out in the Debye–Hueckel approximation. The main experimental features observed for such systems are explained.
Semen N. Semenov 1; Martin E. Schimpf 2
@article{CRMECA_2011__339_5_280_0, author = {Semen N. Semenov and Martin E. Schimpf}, title = {Thermodynamics of mass transport in diluted suspensions of charged particles in non-isothermal liquid electrolytes}, journal = {Comptes Rendus. M\'ecanique}, pages = {280--286}, publisher = {Elsevier}, volume = {339}, number = {5}, year = {2011}, doi = {10.1016/j.crme.2011.03.002}, language = {en}, }
TY - JOUR AU - Semen N. Semenov AU - Martin E. Schimpf TI - Thermodynamics of mass transport in diluted suspensions of charged particles in non-isothermal liquid electrolytes JO - Comptes Rendus. Mécanique PY - 2011 SP - 280 EP - 286 VL - 339 IS - 5 PB - Elsevier DO - 10.1016/j.crme.2011.03.002 LA - en ID - CRMECA_2011__339_5_280_0 ER -
%0 Journal Article %A Semen N. Semenov %A Martin E. Schimpf %T Thermodynamics of mass transport in diluted suspensions of charged particles in non-isothermal liquid electrolytes %J Comptes Rendus. Mécanique %D 2011 %P 280-286 %V 339 %N 5 %I Elsevier %R 10.1016/j.crme.2011.03.002 %G en %F CRMECA_2011__339_5_280_0
Semen N. Semenov; Martin E. Schimpf. Thermodynamics of mass transport in diluted suspensions of charged particles in non-isothermal liquid electrolytes. Comptes Rendus. Mécanique, Thermodiffusion and coupled phenomena, Volume 339 (2011) no. 5, pp. 280-286. doi : 10.1016/j.crme.2011.03.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.03.002/
[1] Thermodynamics of Irreversible Processes, North-Holland Publishing Company, Amsterdam, 1952
[2] Non-Equilibrium Thermodynamics, North-Holland, Amsterdam, 1962
[3] Modern Thermodynamics, Wiley, New York, 1999
[4] Molecular, pressure and thermal diffusion in nonideal multicomponent mixtures, AIChE, Volume 46 (2000), p. 883
[5] Theoretical approach to evaluate thermodiffusion in aqueous alkanol solutions, J. Chem. Phys., Volume 126 (2007), p. 014502
[6] Mass transport thermodynamics in nonisothermal molecular liquid mixtures, Physics – Uspekhi, Volume 52 (2009), p. 1045
[7] Statistical Physics, Part 1, Pergamon Press, 1980 (English translation, E.M. Lifshitz, L.P. Pitaevskii)
[8] Introduction Into Statistical Physics, Gostechizdat, Moscow, 1954 (in Russian)
[9] Statistical thermodynamic expression for the Soret coefficient, EPL, Volume 90 (2010), p. 56002
[10] Particle thermophoresis in liquids, Eur. Phys. J., Volume 15 (2004), p. 255
[11] Thermodiffusion of interacting colloids. I. A statistical thermodynamics approach, J. Chem. Phys., Volume 120 (2004), p. 1632
[12] Statistical Theory of Liquids, Chicago Univ., 1964
[13] Foundations of Colloid Science, vol. 2, Clarendon, London, 1992
[14] Colloidal Systems and Interfaces, Wiley, New York, 1988
[15] Can phoretic motions be treated as interfacial tension gradient driven phenomena?, J. Coll. Interf. Sci., Volume 83 (1981), p. 77
[16] Colloid transport by interfacial forces, Annu. Rev. Fluid Mech., Volume 21 (1989), p. 61
[17] Thermophoresis of dissolved molecules and polymers: consideration of the temperature-induced macroscopic pressure gradient, Phys. Rev. E, Volume 69 (2004), p. 011201
[18] Thermophoresis of metal particles in a liquid, J. Coll. Interf. Sci., Volume 176 (1995), p. 454
Cited by Sources:
Comments - Policy