Comptes Rendus
Influence of solid phase thermal conductivity on species separation rate in packed thermogravitational columns: A direct numerical simulation model
Comptes Rendus. Mécanique, Volume 339 (2011) no. 5, pp. 355-361.

In this work, a direct numerical simulation model has been proposed to study the influence of porous matrix thermal properties on the separation rate in a model of packed thermogravitational column saturated by a binary mixture.

The coupled flow, heat and mass dimensionless equations and boundary conditions have been derived in pore-scale and then solved over a vertical column containing fluid and solid phases.

The results show that the separation rate is changed significantly by the conductivity ratio of the solid/fluid phases. The classical maximum separation at optimal Rayleigh number increases by decreasing the solid thermal conductivity. We obtained that the influence of the solid thermal conductivity for small Rayleigh number is not considerable but for intermediate Rayleigh number the separation rate initially decreases with increasing the thermal conductivity ratio and then reaches an asymptote. As the Rayleigh number increases, convection dominates and the effect of thermal conductivity ratio on separation rate becomes completely inversed.

Published online:
DOI: 10.1016/j.crme.2011.03.014
Keywords: Thermogravitational cell, Thermal conductivity, Soret effect, Porous media, Binary mixture, Separation

Hossein Davarzani 1; Manuel Marcoux 1

1 Université de Toulouse; INPT, UPS; IMFT (Institut de Mécanique des Fluides de Toulouse), Groupe dʼÉtude sur les Milieux Poreux, allée du Professeur Camille Soula, 31400 Toulouse, France
@article{CRMECA_2011__339_5_355_0,
     author = {Hossein Davarzani and Manuel Marcoux},
     title = {Influence of solid phase thermal conductivity on species separation rate in packed thermogravitational columns: {A} direct numerical simulation model},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {355--361},
     publisher = {Elsevier},
     volume = {339},
     number = {5},
     year = {2011},
     doi = {10.1016/j.crme.2011.03.014},
     language = {en},
}
TY  - JOUR
AU  - Hossein Davarzani
AU  - Manuel Marcoux
TI  - Influence of solid phase thermal conductivity on species separation rate in packed thermogravitational columns: A direct numerical simulation model
JO  - Comptes Rendus. Mécanique
PY  - 2011
SP  - 355
EP  - 361
VL  - 339
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crme.2011.03.014
LA  - en
ID  - CRMECA_2011__339_5_355_0
ER  - 
%0 Journal Article
%A Hossein Davarzani
%A Manuel Marcoux
%T Influence of solid phase thermal conductivity on species separation rate in packed thermogravitational columns: A direct numerical simulation model
%J Comptes Rendus. Mécanique
%D 2011
%P 355-361
%V 339
%N 5
%I Elsevier
%R 10.1016/j.crme.2011.03.014
%G en
%F CRMECA_2011__339_5_355_0
Hossein Davarzani; Manuel Marcoux. Influence of solid phase thermal conductivity on species separation rate in packed thermogravitational columns: A direct numerical simulation model. Comptes Rendus. Mécanique, Volume 339 (2011) no. 5, pp. 355-361. doi : 10.1016/j.crme.2011.03.014. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.03.014/

[1] K. Clusius; G. Dickel The separating tube process for liquids, Naturwissenschaften, Volume 27 (1939), pp. 148-149

[2] W.H. Furry; R.C. Jones; L. Onsager On the theory of isotope separation by thermal diffusion, Physical Review, Volume 55 (1939), pp. 1083-1095

[3] S.R. De Groot Phenomenologic theory of the thermogravitational separation mechanism for liquids, Physica, Volume 9 (1942), pp. 801-816

[4] M.M. Bou-Ali; J.J. Valencia; J.A. Madariaga; C. Santamaria; O. Ecenarro; J.F. Dutrieux Determination of the thermodiffusion coefficient in three binary organic liquid mixtures by the thermogravitational method, Philosophical Magazine, Volume 83 (2003) no. 17–18, pp. 2011-2015

[5] J.K. Platten The Soret effect: A review of recent experimental results, Journal of Applied Mechanics, Volume 73 (2006), pp. 5-15

[6] J.K. Platten; P. Costesèque The Soret coefficient in porous media, Journal of Porous Media, Volume 7 (2004), pp. 329-342

[7] M. Marcoux; P. Costesèque Study of transversal dimension influence on species separation in thermogravitational diffusion columns, Journal of Non-Equilibrium Thermodynamics, Volume 32 (2007), pp. 289-298

[8] M. Lorenz; A.H. Emery The packed thermal diffusion column, Chemical Engineering Science, Volume 11 (1959), pp. 16-23

[9] P. Costesèque; M. El Maâtaoui; E. Riviere Enrichissements sélectif dʼhydrocarbures dans les huiles minérales naturelles par diffusion thermogravitationnelle en milieu poreux et cas des isoméres paraffiniques, Entropie, Volume 184–185 (1994), pp. 94-100

[10] M. Marcoux; M.C. Charrier-Mojtabi Etude paramétrique de la thermogravitation en milieu poreux, Comptes Rendus de lʼAcadémie des Sciences, Volume 326 (1998), pp. 539-546

[11] P. Costesèque; M. El Maâtaoui Sur la différenciation des hydrocarbures dans les fluids pétroliers par diffusion thermogravitationnelle en milieu poreux en présence dʼun contact biphasique huile-eau, Entropie, Volume 184–185 (1994), pp. 101-107

[12] J.K. Platten Enhanced molecular separation in inclined thermogravitational columns, The Journal of Physical Chemistry B, Volume 107 (2003), pp. 11763-11767

[13] M.C. Charrier-Mojtabi; K. Maliwan; Y. Pedramrazi; G. Bardan; A. Mojtabi Control of thermoconvective flows by vibration, Mecanique and Industries, Volume 4 (2003), pp. 545-549

[14] B. Elhajjar; M.C. Charrier-Mojtabi; A. Mojtabi Separation of a binary fluid mixture in a porous horizontal cavity, Physical Review E, Volume 77 (2008) no. 1–6, p. 026310

[15] A. Bahloul; M.A. Yahiaoui; P. Vasseur; L. Robillard Thermogravitational separation in a vertical annular porous layer, International Communications in Heat and Mass Transfer, Volume 31 (2004) no. 6, pp. 783-794

[16] C.G. Jiang; T.J. Jaber; H. Bataller; M.Z. Saghir Simulation of Ludwig–Soret effect of a water–ethanol mixture in a cavity filled with aluminum oxide powder under high pressure, International Journal of Thermal Sciences, Volume 47 (2008), pp. 126-135

[17] H. Davarzani; M. Marcoux; M. Quintard Theoretical predictions of the effective thermodiffusion coefficients in porous media, International Journal of Heat and Mass Transfer, Volume 53 (2010), pp. 1514-1528

[18] H. Davarzani; M. Marcoux; P. Costesèque; M. Quintard Experimental measurement of the effective diffusion and thermodiffusion coefficients for binary gas mixture in porous media, Chemical Engineering Science, Volume 65 (2010), pp. 5092-5104

Cited by Sources:

Comments - Policy