Comptes Rendus
Thermophoresis of linear polymer chains
Comptes Rendus. Mécanique, Volume 339 (2011) no. 5, pp. 349-354.

The thermophoresis of a linear polymer chain in a solvent is examined theoretically and is shown to be due to the action of two forces. The first one is Waldmannʼs thermophoretic force (stemming from the departure of the molecular-velocity distribution from Maxwellʼs equilibrium distribution), which here is extrapolated to a dense medium by using scaling considerations. The second force is due to the fact that the viscous friction varies with position owing to the temperature gradient, which brings a zeroth-order correction to the Stokes law of friction. The present scaling theory is compared with recent experiments and is found to account for: (i) the existence of both signs of the thermodiffusion coefficient; (ii) the absolute magnitude of the coefficient; (iii) the fact that it is independent of the chain length in the high-polymer limit; and (iv) the dependence on solvent viscosity. The variation of the coefficient for short chains is also examined.

Published online:
DOI: 10.1016/j.crme.2011.03.013
Keywords: Polymer, Scaling, Soret effect, Thermodiffusion, Thermophoresis

Eric Bringuier 1

1 Matériaux et phenomenes quantiques (Unité mixte 7162 CNRS), universite Denis-Diderot (Paris 7), 10, rue A. Domon et L. Duquet, 75205 Paris cedex 13, France
     author = {Eric Bringuier},
     title = {Thermophoresis of linear polymer chains},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {349--354},
     publisher = {Elsevier},
     volume = {339},
     number = {5},
     year = {2011},
     doi = {10.1016/j.crme.2011.03.013},
     language = {en},
AU  - Eric Bringuier
TI  - Thermophoresis of linear polymer chains
JO  - Comptes Rendus. Mécanique
PY  - 2011
SP  - 349
EP  - 354
VL  - 339
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crme.2011.03.013
LA  - en
ID  - CRMECA_2011__339_5_349_0
ER  - 
%0 Journal Article
%A Eric Bringuier
%T Thermophoresis of linear polymer chains
%J Comptes Rendus. Mécanique
%D 2011
%P 349-354
%V 339
%N 5
%I Elsevier
%R 10.1016/j.crme.2011.03.013
%G en
%F CRMECA_2011__339_5_349_0
Eric Bringuier. Thermophoresis of linear polymer chains. Comptes Rendus. Mécanique, Volume 339 (2011) no. 5, pp. 349-354. doi : 10.1016/j.crme.2011.03.013.

[1] G. Meyerhoff; K. Nachtigall Diffusion, thermodiffusion, and thermal diffusion of polystyrene in solution, J. Polymer Sci., Volume 57 (1962), pp. 227-239

[2] M.E. Schimpf; J.C. Giddings Characterization of thermal diffusion in polymer solutions: Dependence on polymer and solvent parameters, J. Polymer Sci. B, Volume 27 (1989), pp. 1317-1332

[3] M. Martin; C. van Batten; M. Hoyos Determination of thermodiffusion parameters from thermal field-flow fractionation retention data (W. Köhler; S. Wiegand, eds.), Thermal Nonequilibrium Phenomena in Fluid Mixtures, Springer, Berlin, 2002, pp. 250-284

[4] D. Stadelmaier; W. Köhler From small molecules to high polymers: Investigation of the crossover of thermal diffusion in dilute polystyrene solutions, Macromol., Volume 41 (2008), pp. 6205-6208

[5] D. Stadelmaier; W. Köhler Thermal diffusion of dilute polymer solutions: The role of chain flexibility and the effective segment size, Macromol., Volume 42 (2009), pp. 9147-9152

[6] F. Brochard; P.-G. de Gennes Effet Soret des macromolécules flexibles, C. R. Acad. Sci. Paris (Sér. II), Volume 293 (1981), pp. 1025-1027

[7] B.D. Coleman; C. Truesdell On the reciprocal relations of Onsager, J. Chem. Phys., Volume 33 (1960), pp. 28-31

[8] E. Bringuier On the notion of thermophoretic velocity, Phil. Mag., Volume 87 (2007), pp. 873-883

[9] P.-G. de Gennes Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, NY, 1979

[10] E. Bringuier; A. Bourdon Kinetic theory of colloid thermodiffusion, Physica A, Volume 385 (2007), pp. 9-24 The factor of 4 in the cross section in Eq. (22) should be removed

[11] L. Landau; E. Lifshitz Statistical Physics, Oxford, Pergamon, 1959 (Section 151)

[12] D. Boal Mechanics of the Cell, Cambridge University Press, Cambridge, 2002 (Chapter 2)

[13] M. Doi; S.F. Edwards The Theory of Polymer Dynamics, Oxford University Press, Oxford, 1986 (Chapter 8)

[14] P. Ahlrichs; B. Dünweg Simulation of a single polymer chain in solution by combining lattice Boltzmann and molecular dynamics, J. Chem. Phys., Volume 111 (1999), pp. 8225-8239

[15] P.-G. de Gennes Dynamics of entangled polymer solutions II: The Rouse model, Macromol., Volume 9 (1976), pp. 594-598

[16] B. Dünweg; B. Dünweg; A.J.C. Ladd Lattice Boltzmann simulations of soft-matter systems, Adv. Polymer Sci., Volume 14 (2007), pp. 259-264

[17] N.G. van Kampen Stochastic Processes in Physics and Chemistry, Elsevier, Amsterdam, 2007 (Chapters 7 and 8)

[18] E. Bringuier; A. Bourdon Colloid thermophoresis as a non-proportional response, J. Non-Equilib. Thermodyn., Volume 32 (2007), pp. 221-229 (selected papers from the 7th International Meeting on Thermodiffusion, Donostia-San Sebastián, Spain, June 2006)

[19] A. Einstein Zur Theorie der Radiometerkräfte, Z. Phys., Volume 27 (1924), pp. 1-4

[20] I. Goldhirsch; D. Ronis Theory of thermophoresis I: General considerations and mode-coupling analysis, Phys. Rev. A, Volume 27 (1983), pp. 1616-1634

[21] L. Waldmann; L. Waldmann, Z. Naturforschung A (L. Talbot, ed.) (On the motion of spherical particles in nonhomogeneous gases, Rarefied Gas Dynamics), Volume 14, Academic, New York, 1959, pp. 589-599

[22] E. Bringuier Anatomy of particle diffusion, Eur. J. Phys., Volume 30 (2009), pp. 1447-1470

[23] G. Ryskin Simple procedure for correcting equations of evolution, Phys. Rev. E, Volume 56 (1997), pp. 5123-5127

[24] T.G.M. van de Ven Colloidal Hydrodynamics, Academic, London, 1989

[25] D.R. Lide Handbook of Chemistry and Physics, CRC, Boca Raton, 1995

[26] A. Viallat; G. Rossi Statistical structure of soluble conjugated polymers, I. Conformation and electronic properties, J. Chem. Phys., Volume 92 (1990), pp. 4548-4556

Cited by Sources:

Comments - Policy