Comptes Rendus
The long-term future for civilian nuclear power generation in France: The case for breeder reactors Breeder reactors: The physical and physical chemistry parameters, associate material thermodynamics and mechanical engineering: Novelties and issues
Comptes Rendus. Mécanique, Volume 339 (2011) no. 6, pp. 369-387.

The author firstly gives a summary overview of the knowledge base acquired since the first breeder reactors became operational in the 1950s. “Neutronics”, thermal phenomena, reactor core cooling, various coolants used and envisioned for this function, fuel fabrication from separated materials, main equipment (pumps, valves, taps, waste cock, safety circuits, heat exchange units, etc.) have now attained maturity, sufficient to implement sodium cooling circuits. Notwithstanding, the use of metallic sodium still raises certain severe questions in terms of safe handling (i.e. inflammability) and other important security considerations.

The structural components, both inside the reactor core and outside (i.e. heat exchange devices) are undergoing in-depth research so as to last longer. The fuel cycle, notably the refabrication of fuel elements and fertile elements, the case of transuranic elements, etc., call for studies into radiation induced phenomena, chemistry separation, separate or otherwise treatments for materials that have different radioactive, physical, thermodynamical, chemical and biological properties.

The concerns that surround the definitive disposal of certain radioactive wastes could be qualitatively improved with respect to the pressurized water reactors (PWRs) in service today. Lastly, the author notes that breeder reactors eliminate the need for an isotope separation facility, and this constitutes a significant contribution to contain nuclear proliferation.

Among the priorities for a fully operational system (power station – the fuel cycle – operation-maintenance – the spent fuel pool and its cooling system-emergency cooling system-emergency electric power-transportation movements-equipment handling – final disposal of radioactive matter, independent safety barriers), the author includes materials (fabrication of targets, an irradiation and inspection instrument), the chemistry of all sorting processes, equipment “refabrication” or rehabilitation, etc., radioprotection measures and treatment for the “transuranic” elements. For a long period of time, France was in the forefront of nuclear breeder power generation science, technological research and also in the knowledge base related to breeder reactors. It is in the countryʼs interest to pursue these efforts and this could per se constitute one of the national priorities.1

Les connaissances acquises depuis les premières réalisations de surgénérateurs dans le début des années cinquante sont récapitulées. La neutronique, les phénomènes thermiques, le refroidissement du cœur du réacteur, les divers fluides envisagés pour cette fonction, la fabrication des combustibles à partir de corps purs, les gros équipements (pompes, vannes, purgeur, circuits de secours, échangeurs de chaleur, etc.) ont atteint une solide maturité pour le refroidissement par sodium. Celui-ci, toutefois, pose encore des problèmes pour les manutentions et leur sureté.

Les matériaux de structures, tant à lʼintérieur du cœur quʼà lʼextérieur (échangeurs de chaleur) font lʼobjet de recherches approfondies. Le cycle des combustibles, et notamment la « re-fabrication » dʼéléments combustibles et dʼéléments fertiles, le sort des transuraniens, etc. demandent des études dʼirradiations, de séparation chimique, de traitements séparés ou non des corps ayant des propriétés radioactives, chimiques et biologiques différentes.

Les préoccupations liées au sort ultime de certains déchets radioactifs, pourraient être qualitativement améliorés par rapport aux filières de réacteurs à eau existant aujourdʼhui. Enfin, les surgénérateurs suppriment la nécessité dʼavoir recours à une usine de séparation isotopique, ce qui est une contribution substantielle pour contenir une éventuelle prolifération.

Parmi les priorités du système complet : centrale-cycle de combustible-maintenance-déplacements-manutentions-sort ultime des corps radioactifs, comptons les matériaux (donc un instrument dʼirradiation et dʼexamen), la chimie de tous les procédés de triage, de re-fabrication, de corrosion, de fabrication des équipements, etc., la sûreté-radioprotection et les transuraniens. La France a longtemps été au premier rang des recherches et des acquis dans les divers domaines concernés par les surgénérateurs. Il sʼagit de continuer cet effort qui pourrait être une des priorités nationales.1

Received:
Published online:
DOI: 10.1016/j.crme.2011.03.015
Keywords: Energy, Nuclear, Fast breeder, Materials
Mot clés : Energie, Nucléaire, Surgénérateur, Matériaux

Robert Dautray 1

1 Académie des sciences, 23, quai de Conti, 75270 Paris cedex 06, France
@article{CRMECA_2011__339_6_369_0,
     author = {Robert Dautray},
     title = {The long-term future for civilian nuclear power generation in {France:} {The} case for breeder reactors {Breeder} reactors: {The} physical and physical chemistry parameters, associate material thermodynamics and mechanical engineering: {Novelties} and issues},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {369--387},
     publisher = {Elsevier},
     volume = {339},
     number = {6},
     year = {2011},
     doi = {10.1016/j.crme.2011.03.015},
     language = {en},
}
TY  - JOUR
AU  - Robert Dautray
TI  - The long-term future for civilian nuclear power generation in France: The case for breeder reactors Breeder reactors: The physical and physical chemistry parameters, associate material thermodynamics and mechanical engineering: Novelties and issues
JO  - Comptes Rendus. Mécanique
PY  - 2011
SP  - 369
EP  - 387
VL  - 339
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crme.2011.03.015
LA  - en
ID  - CRMECA_2011__339_6_369_0
ER  - 
%0 Journal Article
%A Robert Dautray
%T The long-term future for civilian nuclear power generation in France: The case for breeder reactors Breeder reactors: The physical and physical chemistry parameters, associate material thermodynamics and mechanical engineering: Novelties and issues
%J Comptes Rendus. Mécanique
%D 2011
%P 369-387
%V 339
%N 6
%I Elsevier
%R 10.1016/j.crme.2011.03.015
%G en
%F CRMECA_2011__339_6_369_0
Robert Dautray. The long-term future for civilian nuclear power generation in France: The case for breeder reactors Breeder reactors: The physical and physical chemistry parameters, associate material thermodynamics and mechanical engineering: Novelties and issues. Comptes Rendus. Mécanique, Volume 339 (2011) no. 6, pp. 369-387. doi : 10.1016/j.crme.2011.03.015. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.03.015/

[1] Charles Till Plentiful Energy and the IFR Story, Center for Reactor Information, 2005 (for the complete citation: “The name Integral Fast Reactor described the principal characteristics of the technology: the word Integral was chosen to denote the fact that every element of a complete nuclear power system was being developed simultaneously, and each was an integral part of the whole: The reactor, itself, the processes for treatment of the spent fuel as it is replaced by new fuel, the fabrication of the new fuel, and the treatment of the waste to put it in final form suitable for disposal all were an integral part of the development and the product. Nothing was to be left behind to be developed later. No detail was to be left hanging, unresolved, to raise problems later, as had been the case in present generation of nuclear power… The new safety characteristics of the reactor can be summarized by the phrases inherently safe, or passively safe, and both have been used in descriptions of the technology… These safety characteristics were made possible by the development of a new fuel type for the IFR, a metallic fuel alloy, which, along with use of a liquid metal for coolant, made the reactor invulnerable to the most serious accidents that can befall a reactor.”)

[2] Science council for global initiatives, USA, 2011.

[3] Glenn T. Seaborg The plutonium story (Ronald Kathren; Jerry Gough; Gary Benefiel, eds.), The Journals of Professor Glenn T. Seaborg, Batelle Press, 1994, pp. 1939-1946

[4] Andrew Szanton The Recollections of Eugen P. Wigner, Plenum Press, New York, 1992

[5] Emilio Segré A Mind Always in Motion, The Autobiography of Emilio Segré, University of California Press, 1993

[6] Lillian Hoddeson, et al., Critical Assembly, A Technical History of Los Alamos During the Oppenheimer Years, 1943–1945, Cambridge University Press, Chapter 14: Exploring the plutonium implosion weapon, Chapter 15: Finding the implosion design, Chapter 16: Building the implosion gadget, pp. 267–334.

[7] J. Magill, et al., Chart of the nuclides, 7th edition, Karlsruhe nuklidkarte, European Commission, Joint Research Center, Institute for Transuranic, 2006.

[8] Jean Bussac; Paul Reuss Traité de neutronique, physique et calcul des réacteurs nucléaires, Hermann, 1985

[9] Henri Bailly, Denise Ménessier, Claude Prunier, et al., Le combustible nucléaire des réacteurs à eau sous pression et des réacteurs à neutrons rapides, Collection du Commissariat à lʼEnergie Atomique, Conception et comportement, Eyrolles, 1996.

[10] Roberto Caciuffo et al. Multipolar interactions in f-electron systems, The paradigm of actinides dioxydes, Review of Modern Physics, Volume 81 ( April–June 2009 ), pp. 807-857

[11] NRC topical seminar on Sodium Fast Reactor, Argonne National Laboratory, May 3, 2007.

[12] Pierre Bacher, Énergie nucléaire, Editions Techniques de lʼIngénieur. Lʼénergie en 21 questions, Odile Jacob.

[13] Robert Dautray, Lʼénergie nucléaire civile dans le cadre temporel des changements climatiques, Académie des sciences, Tel Doc Lavoisier, décembre 2001, pp. 109–110.

[14] Xavier Thibault, et al., Combustibles pour réacteur à eau sous pression, Le retour dʼexpérience de EDF, Revue générale nucléaire, Revue, 2010, pp. 32–39.

[15] Sébastien Candel, Communication personnelle.

[16] M. Norgett et al. A proposed method of calculating displacement dose rates, Nuclear Engineering and Design, Volume 33 ( April 1975 ), pp. 50-54

[17] Robert Dautray; Jacques Friedel Surgénérateurs : lʼétat des matériaux aux hautes températures, hautes puissances locales et températures, leurs gradients et propriétés mécaniques adaptées aux contraintes qui en résultent, C. R. Mecanique, Volume 338 (2010), pp. 649-655

[18] Gary Was Fundamentals of Radiation Materials Science, Metal and Alloys, Springer, 2007 (Fig. 1.1, p. XII)

[19] Robert Dautray, Les isotopes du plutonium et leurs descendants dans le nucléaire civil, Rapport à lʼAcadémie des Sciences, TEC DOC Lavoisier, mai 2005, pp. 29–50.

[20] Jean-Pierre Bonnal, Microscopy and irradiation damage studies laboratories, CEA/Saclay.

[21] Jean-Pierre Bonnal et al. Graphite, ceramics and ceramic composites for high temperature nuclear power systems, MRS Bulletin, Volume 34 ( January 2009 ) no. 1, pp. 28-34

[22] Enrique Martinez, et al., Simulations of decomposition kinetics of Fe–Cr solid solutions during thermal aging, Service de recherches de métallurgie physique, CEA, 2010.

[23] Aage Bohr; Ben Mottelson Nuclear Structure, vol. II, W.A. Benjamin, 1975

[24] Yannick Guérin et al. Material challenges for advanced nuclear energy systems, Material Research Society Bulletin, Volume 34 ( January 2009 ), pp. 10-19

[25] Stéphane Gin, Etude expérimentale de lʼinfluence dʼespèces aqueuses sur la cinétique de dissolution du verre nucléaire R7T7, Thèse, Université de Poitiers, 1994 ; Le comportement à long terme des verres pour le confinement des déchets, in : Clefs CEA, no. 59, 2010, pp. 22–23.

[26] Yann de Carlan, Les alliages ODS pour les structures sous irradiation, in : Clefs CEA, no. 59, 2010, pp. 31–34.

[27] Robert Dautray, Neutron and gamma dosimetry for the dose-effect relationship used by the ICRP, in: Problems Associated with the Effects of Low Doses of Ionising Radiations, Rapport de lʼAcadémie des Sciences, TEC DOC Lavoisier, février 1997.

[28] Robert Dautray, Sécurité et utilisation hostile du nucléaire civil, Académie des sciences, de la physique à la biologie, Paris, TEC DOC Lavoisier, juin 2007.

[29] Material Research Society Bulletin (novembre 2010) 841–875.

[30] Frank Carré, et al., Outlook of France RD strategy on future nuclear systems, in: CEA, Research Fuel Management Conference (RRFM2007), Lyon, France, March 2007.

[31] C. R. Physique, 9 (2008) no. 3–4

[32] Robert Guillaumont et al. Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium, Chemical Thermodynamics, vol. 5, Nuclear Energy Agency, OECD, Elsevier, 2003

Cited by Sources:

Comments - Policy