Comptes Rendus
Some considerations about the symmetry and evolution of chaotic Rayleigh–Bénard convection: The flywheel mechanism and the “wind” of turbulence
Comptes Rendus. Mécanique, Volume 339 (2011) no. 9, pp. 563-572.

Rayleigh–Bénard convection in finite-size enclosures exhibits really intricate features when turbulent states are reached and thermal plumes play a crucial role in a number of them. This complex mechanism may be regarded as a “machine” containing many different working parts: boundary layers, mixing zones, jets, and a relatively free and isothermal central region. These parts are generally regarded as the constitutive “ingredients” whose interplay leads to the emergence of a macroscopic pattern with well-defined properties. Like the Lorenz model (but with the due differences) such a complex structure has a prevailing two-dimensional nature and can be oriented clockwise or anticlockwise (both configurations are equally likely to occur and the flow can exhibit occasional and irregular “reversals” from one to the other without a change in magnitude). It is usually referred to in the literature as “wind of turbulence” or “flywheel”. The present article provides insights into the possible origin of such dynamics and related patterning behavior (supported by “ad hoc” novel numerical simulations carried out for Pr=15 and O(103)RaO(1010)) together with a short exposition of existing theories, also illustrating open points and future directions of research.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2011.05.002
Keywords: Computational fluid mechanics, Thermal convection, Transitions

Marcello Lappa 1

1 CTC, Via Salvator Rosa 53, 80046 San Giorgio a Cremano (Na), Italy
@article{CRMECA_2011__339_9_563_0,
     author = {Marcello Lappa},
     title = {Some considerations about the symmetry and evolution of chaotic {Rayleigh{\textendash}B\'enard} convection: {The} flywheel mechanism and the {\textquotedblleft}wind{\textquotedblright} of turbulence},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {563--572},
     publisher = {Elsevier},
     volume = {339},
     number = {9},
     year = {2011},
     doi = {10.1016/j.crme.2011.05.002},
     language = {en},
}
TY  - JOUR
AU  - Marcello Lappa
TI  - Some considerations about the symmetry and evolution of chaotic Rayleigh–Bénard convection: The flywheel mechanism and the “wind” of turbulence
JO  - Comptes Rendus. Mécanique
PY  - 2011
SP  - 563
EP  - 572
VL  - 339
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crme.2011.05.002
LA  - en
ID  - CRMECA_2011__339_9_563_0
ER  - 
%0 Journal Article
%A Marcello Lappa
%T Some considerations about the symmetry and evolution of chaotic Rayleigh–Bénard convection: The flywheel mechanism and the “wind” of turbulence
%J Comptes Rendus. Mécanique
%D 2011
%P 563-572
%V 339
%N 9
%I Elsevier
%R 10.1016/j.crme.2011.05.002
%G en
%F CRMECA_2011__339_9_563_0
Marcello Lappa. Some considerations about the symmetry and evolution of chaotic Rayleigh–Bénard convection: The flywheel mechanism and the “wind” of turbulence. Comptes Rendus. Mécanique, Volume 339 (2011) no. 9, pp. 563-572. doi : 10.1016/j.crme.2011.05.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.05.002/

[1] M. Lappa Thermal Convection: Patterns, Evolution and Stability, John Wiley & Sons, Ltd., Chichester, England, 2010 (700 pp) (ISBN: 978-0-470-69994-2)

[2] D.L. Hartmann; L.A. Moy; Q. Fu Tropical convection and the energy balance at the top of the atmosphere, J. Climate, Volume 14 (2001), pp. 4495-4511

[3] J. Marshall; F. Schott Open-ocean convection: Observations, theory, and models, Rev. Geophys., Volume 37 (1999), pp. 1-64

[4] G.R. Hunt; P.F. Linden The fluid mechanics of natural ventilation – displacement ventilation by buoyancy-driven flows assisted by wind, Building Environm., Volume 34 (1999), pp. 707-720

[5] K. Achoubir; R. Bennacer; A. Cheddadi; M. El Ganaoui; E. Semma Numerical study of thermosolutal convection in enclosures used for directional solidification (Bridgman cavity), Fluid Dyn. Mater. Process., Volume 4 (2008) no. 3, pp. 199-210

[6] F. Mechighel; M. El Ganaoui; M. Kadja; B. Pateyron; S. Dost Numerical simulation of three dimensional low Prandtl liquid flow in a parallelepiped cavity under an external magnetic field, Fluid Dyn. Mater. Process., Volume 5 (2009) no. 4, pp. 313-330

[7] E.A. Semma; M. El Ganaoui; V. Timchenko; E. Leonardi Thermal modulation effects on thermosolutal convection in a vertical Bridgman cavity, Fluid Dyn. Mater. Process., Volume 6 (2010) no. 3, pp. 233-250

[8] S. Bouabdallah; R. Bessaih Magnetohydrodynamics stability of natural convection during phase change of molten gallium in a three-dimensional enclosure, Fluid Dyn. Mater. Process., Volume 6 (2010) no. 3, pp. 251-276

[9] Md.T. Islam; S. Saha; Md.A.H. Mamun; M. Ali Two dimensional numerical simulation of mixed convection in a rectangular open enclosure, Fluid Dyn. Mater. Process., Volume 4 (2008) no. 2, pp. 125-138

[10] L. Bennamoun; A. Belhamri Study of heat and mass transfer in porous media: Application to packed-bed drying, Fluid Dyn. Mater. Process., Volume 4 (2008) no. 4, pp. 221-230

[11] A.M. Ben-Arous; A.A. Busedra Mixed convection in horizontal internally finned semicircular ducts, Fluid Dyn. Mater. Process., Volume 4 (2008) no. 4, pp. 255-262

[12] G. Accary; S. Meradji; D. Morvan; D. Fougere Towards a numerical benchmark for 3D low Mach number mixed flows in a rectangular channel heated from below, Fluid Dyn. Mater. Process., Volume 4 (2008) no. 4, pp. 263-270

[13] M. El Alami; E.A. Semma; M. Najam; R. Boutarfa Numerical study of convective heat transfer in a horizontal channel, Fluid Dyn. Mater. Process., Volume 5 (2009) no. 1, pp. 23-36

[14] Z. Aouachria Heat and mass transfer along of a vertical wall by natural convection in porous media, Fluid Dyn. Mater. Process., Volume 5 (2009) no. 2, pp. 137-148

[15] A. Meskini; M. Najam; M. El Alami Laminar mixed heat transfer in a square cavity with heated rectangular blocks and submitted to a vertical forced flow, Fluid Dyn. Mater. Process., Volume 7 (2011) no. 1, pp. 97-110

[16] M. Lappa Secondary and oscillatory gravitational instabilities in canonical three-dimensional models of crystal growth from the melt, Part 1: Rayleigh–Bénard systems, C. R. Acad. Sci. Méc., Volume 335 (2007) no. 5–6, pp. 253-260

[17] G. Ahlers; S. Grossmann; D. Lohse Heat transfer & large-scale dynamics in turbulent Rayleigh–Bénard convection, Rev. Mod. Phys., Volume 81 (2009), pp. 503-537

[18] M. Lappa, Some considerations about the fundamental properties of Chaotic Rayleigh–Bénard convection: The Lorenz model and the Butterfly effect, FDMP, 2010, in press.

[19] E.N. Lorenz Deterministic nonperiodic flow, J. Atmospheric Sci., Volume 20 (1963), pp. 130-141

[20] B.R. Taylor; G. Taylor; J.S. Turner Turbulent gravitational convection from maintained and instantaneous sources, Proc. R. Soc. Lond. Ser. A, Volume 234 (1956), pp. 1-23

[21] J.S. Turner Buoyant plumes and thermals, Annu. Rev. Fluid Mech., Volume 1 (1969), pp. 29-44

[22] T.Y. Chu; R.J. Goldstein Turbulent convection in a horizontal layer of water, J. Fluid Mech., Volume 60 (1973), pp. 141-159

[23] B. Castaing; G. Gunaratne; F. Heslot; L. Kadanoff; A. Libchaber; S. Thomae; X. Wu; S. Zaleski; G. Zanetti Scaling of hard thermal turbulence in Rayleigh–Bénard convection, J. Fluid Mech., Volume 204 (1989), pp. 1-30

[24] T.H. Solomon; J.P. Gollub Sheared boundary layers in turbulent Rayleigh–Bénard convection, Phys. Rev. Lett., Volume 64 (1990), pp. 2382-2385

[25] J.H. Curry A generalized Lorenz system, Comm. Math. Phys., Volume 60 (1978) no. 3, pp. 193-204

[26] R. Festa; A. Mazzino; D. Vincenzi Lorenz-like systems and classical dynamical equations with memory forcing: An alternate point of view for singling out the origin of chaos, Phys. Rev. E, Volume 65 (2002), p. 046205

[27] J. Lu; G. Chen; D. Cheng A new chaotic system and beyond: The generalized Lorenz-like system, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 14 (2004) no. 5, pp. 1507-1537

[28] X. Shan Simulation of Rayleigh–Bénard convection using lattice-Boltzmann method, Phys. Rev. R, Volume 55 (1997), pp. 2780-2788

[29] R. Djebali; M. El Ganaoui; H. Sammouda; R. Bennacer Some benchmarks of a side wall heated cavity using lattice Boltzmann approach, Fluid Dyn. Mater. Process., Volume 5 (2009) no. 3, pp. 261-282

[30] A. Mezrhab; H. Naji Coupling of lattice Boltzmann equation and finite volume method to simulate heat transfer in a square cavity, Fluid Dyn. Mater. Process., Volume 5 (2009) no. 3, pp. 283-296

[31] E. Bucchignani An implicit unsteady finite volume formulation for natural convection in a square cavity, Fluid Dyn. Mater. Process., Volume 5 (2009) no. 1, pp. 37-60

[32] A.P. Vincent; D.A. Yuen Transition to turbulent thermal convection beyond Ra=1010 detected in numerical simulations, Phys. Rev. E, Volume 61 (2000) no. 5, pp. 5241-5246

[33] M. Lappa On the nature and structure of possible three-dimensional steady flows in closed and open parallelepipedic and cubical containers under different heating conditions and driving forces, Fluid Dyn. Mater. Process., Volume 1 (2005) no. 1, pp. 1-19

[34] J. Mizushima; T. Adachi Sequential transitions of the thermal convection in a square cavity, J. Phys. Soc. Jpn., Volume 66 (1997) no. 1, pp. 79-90

[35] A. Parodi; J. von Hardenberg; G. Passoni; E.A. Spiegel Clustering of plumes in turbulent convection, Phys. Rev. Lett., Volume 92 (2004), p. 194503

[36] L.P. Kadanoff Turbulent heat flow: Structures and scaling, Phys. Today, Volume 54 (2001) no. 8, pp. 34-39

[37] X.-L. Qiu; S.H. Yao; P. Tong Large-scale coherent rotation and oscillation in turbulent thermal convection, Phys. Rev. E, Volume 61 (2000) no. 6, p. R6075-R6078

[38] X.-L. Qiu; P. Tong Large-scale velocity structures in turbulent thermal convection, Phys. Rev. E, Volume 64 (2001) no. 3, p. 036304 (13 pp)

[39] S. Grossman; D. Lohse Scaling in thermal convection: a unifying theory, J. Fluid Mech., Volume 407 (2000), pp. 27-56

[40] J.J. Niemela; K.R. Sreenivasan Rayleigh-number evolution of large-scale coherent motion in turbulent convection, Europhys. Lett., Volume 62 (2003) no. 6, pp. 829-833

[41] S. Grossman; D. Lohse On geometry effects in Rayleigh–Bénard convection, J. Fluid Mech., Volume 486 (2003), pp. 105-114

[42] F. Chillà; S. Ciliberto; C. Innocenti; E. Pampaloni Boundary layer and scaling properties in turbulent thermal convection, Nuovo Cimento, Volume 15 (1993), pp. 1229-1249

[43] H.D. Xi; K.Q. Xia Flow mode transitions in turbulent thermal convection, Phys. Fluids, Volume 20 (2008), p. 055104

[44] Y.B. Xin; K.-Q. Xia; P. Tong Measured velocity boundary layers in turbulent convection, Phys. Rev. Lett., Volume 77 (1996), pp. 1266-1269

[45] Y.-B. Xin; K.-Q. Xia Boundary layer length scales in convective turbulence, Phys. Rev. E, Volume 56 (1997) no. 3, pp. 3010-3015

[46] X.L. Qiu; K.-Q. Xia Viscous boundary layers at the sidewall of a convection cell, Phys. Rev. E, Volume 58 (1998), pp. 486-491

[47] X.L. Qiu; K.-Q. Xia Spatial structure of the viscous boundary layer in turbulent convection, Phys. Rev. E, Volume 58 (1998), pp. 5816-5820

[48] S. Lam; X.-D. Shang; S.-Q. Zhou; K.-Q. Xia Prandtl number dependence of the viscous boundary layer and the Reynolds numbers in Rayleigh–Bénard convection, Phys. Rev. E, Volume 65 (2002) no. 6, p. 066306 (8 pp)

[49] C. Sun; K.Q. Xia; P. Tong Three-dimensional flow structures and dynamics of turbulent thermal convection in a cylindrical cell, Phys. Rev. E, Volume 72 (2005), p. 026302 (13 pp)

[50] K.-Q. Xia; C. Sun; S.Q. Zhou Particle image velocimetry measurement of the velocity field in turbulent thermal convection, Phys. Rev. E, Volume 68 (2003), p. 066303

[51] C. Sun; Y.H. Cheung; K.Q. Xia Experimental studies of the viscous boundary layer properties in turbulent Rayleigh–Bénard convection, J. Fluid Mech., Volume 605 (2008), pp. 79-113

[52] R. Verzicco; R. Camussi Prandtl number effects in convective turbulence, J. Fluid Mech., Volume 383 (1999), pp. 55-73

[53] A. Tilgner; A. Belmonte; A. Libchaber Temperature and velocity profiles of turbulence convection in water, Phys. Rev. E, Volume 47 (1993), p. R2253-R2256

[54] A. Belmonte; A. Tilgner; A. Libchaber Boundary layer length scales in thermal turbulence, Phys. Rev. Lett., Volume 70 (1993), pp. 4067-4070

[55] A. Belmonte; A. Tilgner; A. Libchaber Temperature and velocity boundary layers in turbulent convection, Phys. Rev. E, Volume 50 (1994), pp. 269-279

[56] S.L. Lui; K.-Q. Xia Spatial structure of the thermal boundary layer in turbulent convection, Phys. Rev. E, Volume 57 (1998), pp. 5494-5503

[57] J. Wang; K.-Q. Xia Spatial variations of the mean and statistical quantities in the thermal boundary layers of turbulent convection, Eur. Phys. J. B, Volume 32 (2003), pp. 127-136

[58] R. Verzicco; R. Camussi Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell, J. Fluid Mech., Volume 477 (2003), pp. 19-49

[59] R. Verzicco; K.R. Sreenivasan A comparison of turbulent thermal convection between conditions of constant temperature and constant heat flux, J. Fluid Mech., Volume 595 (2008), pp. 203-219

[60] T. Hartlep; A. Tilgner; F.H. Busse Transition to turbulent convection in a fluid layer heated from below at moderate aspect ratio, J. Fluid Mech., Volume 544 (2005), pp. 309-322

[61] E. Villermaux Memory-induced low frequency oscillations in closed convection boxes, Phys. Rev. Lett., Volume 75 (1995), pp. 4618-4621

Cited by Sources:

Comments - Policy