Interface models coupling friction and adhesion, where adhesion is regarded as interface damage, are briefly reviewed. The most widely used cohesive zone models are presented and discussed. A general framework for these laws, recently developed by Del Piero and Raous in the form of a unified model, is outlined. As an example, it is here established that the RCCM (Raous–Cangémi–Cocou–Monerie) model is a specific case in this general framework. The variational formulation and some associated solvers are briefly recalled in the context of non-smooth mechanics in the cases of both quasi-static and dynamic problems. A few examples in various fields of application are given. Lastly, some open problems and ongoing researches in this field are presented and discussed.
On passe ici en revue de manière concise les modèles dʼinterface couplant frottement et adhésion, où lʼadhésion est considérée comme un endommagement dʼinterface. Les modèles de zones cohésives les plus utilisés sont présentés et discutés. Un cadre général pour ces lois est donné sous la forme dʼune formulation unifiée récemment proposée par Del Piero et Raous. Comme exemple dʼapplication, on établit que la loi RCCM (Raous–Cangémi–Cocou–Monerie) est un cas particulier de cette formulation générale. Les formes variationnelles et quelques méthodes de résolution associées sont rappelées dans le contexte de la mécanique non régulière à la fois pour des problèmes quasi-statiques et pour des problèmes dynamiques. Quelques exemples dans des domaines dʼapplication variés sont donnés. Enfin, quelques problèmes ouverts et des recherches en cours dans ce champ thématique sont évoqués.
Mots-clés : Contact, Adhésion, Frottement, Interface, Mécanique non régulière
Michel Raous 1
@article{CRMECA_2011__339_7-8_491_0, author = {Michel Raous}, title = {Interface models coupling adhesion and friction}, journal = {Comptes Rendus. M\'ecanique}, pages = {491--501}, publisher = {Elsevier}, volume = {339}, number = {7-8}, year = {2011}, doi = {10.1016/j.crme.2011.05.007}, language = {en}, }
Michel Raous. Interface models coupling adhesion and friction. Comptes Rendus. Mécanique, Surface mechanics : facts and numerical models, Volume 339 (2011) no. 7-8, pp. 491-501. doi : 10.1016/j.crme.2011.05.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.05.007/
[1] A unified model for adhesive interfaces with damage, viscosity, and friction, Eur. J. Mech. A/Solids, Volume 29 (2010), pp. 496-507
[2] Un modèle couplant adhérence et frottement pour le contact entre deux solides déformables, CRAS, Série II b, Volume 325 (1997) no. 9, pp. 503-509
[3] A consistent model coupling adhesion, friction and unilateral contact, Comput. Methods Appl. Mech. Engrg., Volume 177 (1999), pp. 383-399
[4] Unilateral contact, friction and adhesion in composite materials (J.A.C. Martins; M.D.P. Monteiro Marques, eds.), Contact Mechanics, Kluwer, Dordrecht, 2002, pp. 333-346
[5] Yielding of steel sheets containing slits, J. Mech. Phys. Solids, Volume 8 (1960), pp. 100-104
[6] The mathematical theory of equilibrium cracks in brittle fracture, Adv. Appl. Mech., Volume 7 (1962), pp. 55-129
[7] A continuum model for void nucleation by inclusion debonding, J. Appl. Mech., Volume 54 (1987), pp. 525-531
[8] An analysis of tensile decohesion along an interface, J. Mech. Phys. Solids, Volume 38 (1990) no. 3, pp. 289-324
[9] Micromechanical modeling of interfacial decohesion, Ultramicroscopy, Volume 40 (1992), pp. 203-214
[10] The effect of bond strength and loading rate on the conditions governing the attainment of intersonic crack growth along interfaces, J. Mech. Phys. Solids, Volume 47 (1999), pp. 2411-2449
[11] Effect of fiber debonding in a whisker-reinforced metal, Math. Sci. Engrg. A, Volume 125 (1990), pp. 203-213
[12] The relation between crack growth resistance and fracture process parameters in elastic–plastic solids, J. Mech. Phys. Solids, Volume 40 (1992), pp. 1377-1397
[13] Effects of strain-dependent cohesive zone model on prediction of crack growth resistance, Int. J. Solids Struct., Volume 33 (1996), pp. 3297-3308
[14] Numerical simulations of fast crack growth in brittle solids, J. Mech. Phys. Solids, Volume 42 (1994) no. 9, pp. 1397-1434
[15] A cohesive zone model based on the micromechanics of dislocations, Model. Simul. Mater. Sci. Eng., Volume 16 (2008), p. 19 pp
[16] A study of dynamic crack growth in elastic materials using a cohesive zone model, Internat. J. Engrg. Sci., Volume 35 (1997) no. 12–13, pp. 1085-1114
[17] Y. Monerie, Fissuration des matériaux composites : rôle de lʼinterface fibre/matrice, Thesis, M. Raous (Adv.), Univ. Provence, 2000.
[18] Interface debonding model: a viscous regularization with a limited rate dependency, Int. J. Solids Struct., Volume 38 (2001) no. 18, pp. 3127-3160
[19] A model of adhesion coupled to contact and friction, Eur. J. Mech. A/Solids, Volume 22 (2003), pp. 545-565
[20] An analytical and numerical study of the overall behavior of metal-matrix composites, Model. Simul. Mater. Sci. Eng., Volume 2 (1994), pp. 637-658
[21] Damage analysis of interlaminar fracture specimens, Comp. Struct., Volume 31 (1995) no. 1, pp. 61-74
[22] Damage in domains and interfaces: a coupled predictive theory, J. Mech. Mater. Struct., Volume 1 (2006) no. 7, pp. 1205-1234
[23] An enriched cohesive zone model for delamination in brittle interface, Internat. J. Numer. Methods Engrg., Volume 80 (2009), pp. 609-630
[24] An exact theory of interfacial debonding in layered elastic composites, Int. J. Solids Struct., Volume 46 (2009), pp. 2712-2723
[25] Fiber sliding model accounting for interfacial micro-dilatancy, Mech. Mater., Volume 22 (1996), pp. 65-84
[26] A cohesive zone model with a large displacement formulation accounting for interfacial fibrillation, Eur. J. Mech. A/Solids, Volume 26 (2007), pp. 1-19
[27] A thermo-mechanical cohesive zone model, Comput. Mech., Volume 46 (2010), pp. 735-745
[28] Model coupling friction and adhesion for steel-concrete interfaces, Int. J. Comput. Appl. Technol., Volume 34 (2009) no. 1, pp. 42-51
[29] N. Terfaya, M. Raous, A. Berga, Cohesive zone model and bipotential formulation: application to a pile/soil interface, in: Proceedings of the 3rd Euro Mediterranean Symposium on Advances in Geomaterials and Structures, 2010, 6 pp.
[30] Application of frictional contact in geotechnical engineering, Int. J. Geomech. ( May–June 2007 ), pp. 176-185
[31] Gradient-enhanced damage modeling of concrete fracture, Mech. Cohes.-Frict. Mater., Volume 3 (1998), pp. 323-342
[32] Contribution to the modeling of interfaces in masonry construction, Constr. Build. Mater., Volume 23 (2009) no. 6, pp. 2428-2441
[33] Combining damage and friction in a cohesive-zone model, Internat. J. Numer. Methods Engrg., Volume 65 (2006), pp. 542-582
[34] V. Acary, Y. Monerie, Nonsmooth fracture dynamics using a cohesive zone model, INRIA report n6032, 2006, 56 pp. (ISSN 0249-6399).
[35] Non-smooth contact dynamics approach of cohesive materials, Philosophical Transactions: Mathematical, Physical Engineering Sciences, Royal Society, London A, Volume 359 (2001) no. 1789, pp. 2497-2518
[36] Identification of the representative crack length evolution in a multi-level interface model for quasi-brittle masonry, Int. J. Solids Struct., Volume 47 (2010), pp. 3011-3021
[37] Initiation of antiplane shear instability under slip dependent friction, J. Geophys. Res., Volume 102 (1997) no. B9, pp. 20363-20371
[38] Stability of steady frictional slipping, J. Appl. Mech., Volume 50 (1983), pp. 343-349
[39] Universal nucleation length for slip-weakening rupture instability under non-uniform fault loading, J. Geophys. Res., Volume 108 (2003) no. B1, p. 2042 | DOI
[40] Scale-dependent friction and damage interface law: implications for effective earthquake rupture dynamics and radiation, Geophysical Research Abstracts (EGU2010), Volume 12 (2010), p. 11647
[41] G. Festa, J.-P. Vilotte, M. Raous, Nucleation length in an adhesive-frictional interface under nonuniform fault loading condition, in preparation.
[42] Adhérence des solides, J. Méc. Théor. Appl., Volume 6 (1987) no. 3, pp. 383-407
[43] Contact with adhesion (J.-J. Moreau; P.D. Panagiotopoulos, eds.), Nonsmooth Mechanics and Applications, CISM Courses and Lectures, vol. 302, Springer, Wien, 1988, pp. 177-221
[44] Damage, gradient of damage and principle of virtual power, Int. J. Solids Struct., Volume 8 (1996), pp. 1083-1103
[45] Formulation de lʼendommagement des interfaces, CRAS, série II, Volume 315 (1992), pp. 1047-1050
[46] Quasistatic Signorini problem with Coulomb friction and coupling to adhesion (P. Wriggers; P. Panagiotopoulos, eds.), New Developments in Contact Problems, CISM Courses & Lect., vol. 384, Springer-Verlag, Wien, 1999, pp. 101-178
[47] Surface energy and the contact of elastic solids, Proc. Roy. Soc. London A, Volume 324 (1971), pp. 301-313
[48] Contact Mechanics, Cambridge University Press, 1985
[49] The role of adhesion in the impact of elastic spheres, J. Adhes. Sci. Technol., Volume 8 (1994), pp. 1323-1332
[50] G. Sperling, Eine Theorie der Haftung von Feststoffteilchen an festen Korpern, Dissertation von der Facultat fur Machinenwesen der Technischen Hochschule Karlsruhe, 1964.
[51] Adhesion of spheres: the JKR–DMT transition using a Dugdale model, J. Colloid Interface Sci., Volume 150 (1992), pp. 243-269
[52] Fracture mechanics and adherence of viscoelastic solids (L.H. Lee, ed.), Adhesion, Adsorption of Polymers (part A), Plenum Press, New York, 1980, pp. 20-277
[53] Adherence, friction and wear of rubber-like materials (R. Denton; M.K. Keshavan, eds.), Wear and Friction of Elastomers, American Society for Testing and Materials, Philadelphia, 1992, pp. 82-113
[54] Adhesion of elastic spheres, Proc. Roy. Soc. London A, Volume 453 (1997), pp. 1277-1297
[55] Adhesion effects in contact interaction of solids, C. R. Mecanique, Volume 336 (2008), pp. 118-125
[56] F. Péralès, Fissuration des matériaux à gradient de propriétés, Application au Zircaloy hydruré, Thesis, A. Chrysochoos, Y. Monerie (Adv.), Univ. Montpellier II, 2005.
[57] M. Schryve, Modéle dʼadhésion cicatrisante et applications au contact verre/élastomére, Thesis, M. Raous, M. Cocou (Adv.), Univ. Provence, 2000.
[58] Restorable adhesion and friction (C.C. Baniotopoulos, ed.), Nonsmooth/Nonconvex Mechanics with Applications in Engineering, Ziti Publisher, Thessaloniki, 2006, pp. 165-172
[59] A dynamic unilateral contact problem with adhesion and friction in viscoelasticity, ZAMP, Volume 61 (2010), pp. 721-743
[60] A model coupling adhesion to friction for the interaction between a crack and a fiber/matrix interface, Z. Angew. Mat. Mech., Volume 80 (2000) no. Special Issue, pp. 205-209
[61] A damage-mechanics-based approach for modeling decohesion in adhesively bonded assemblies, Engineering Fracture Mechanics, Volume 73 (2006) no. 18, pp. 2774-2801
[62] Time dependant friction and the mechanics of stick-slip, Pure Appl. Geophys., Volume 116 (1978) no. 4–5, pp. 790-806
[63] The growth of slip surfaces in the progressive failure of over-consolidated clay, Proc. Roy. Soc. London A, Volume 332 (1973), pp. 527-548
[64] Approximation results for a class of quasistatic contact problems including adhesion and friction (P. Argoul; M. Frémond; Q.S. Nguyen, eds.), Proc. IUTAM Symposium on Variations de Domaines et Frontières Libres en Mécanique des Solides, Kluwer, 1999, pp. 211-218
[65] Adhesive contact and implicit evolution variational inequalities (C.C. Baniotopoulos, ed.), Nonsmooth/Nonconvex Mechanics with Applications in Engineering – In Memoriam of Prof. P.D. Panagiotopoulos, Ziti Publisher, 2002, pp. 167-174
[66] Preconditioned conjugate gradient method for a unilateral problem with friction (A. Curnier, ed.), Contact Mechanics, Polytech. et Univ. Romandes Press, 1992, pp. 423-432
[67] L. Cangémi, Frottement et adhérence : modèle, traitement numérique et application à lʼinterface fibre/matrice, Thesis, M. Raous (Adv.), Univ. Provence, 1997.
[68] Comparaison de lois dʼinterface fibre/matrice sur la base dʼun modèle uniaxial dʼexpérience de micro-indentation (J. Lamon; D. Baptiste, eds.), Proceedings 11ième Journées Nationales sur les Composites, t. 2, AMAC Publish., 1998, pp. 565-574
[69] Unilateral contact and dry friction in finite freedom dynamics (J.J. Moreau; P.D. Panagiotopoulos, eds.), Non-Smooth Mechanics and Applications, CISM Courses and Lectures, vol. 302, Springer, Wien, 1988, pp. 1-82
[70] The non-smooth contact dynamics method, Comput. Methods Appl. Mech. Engrg., Volume 177 (1999) no. 3–4, pp. 235-257
[71] Une plateforme de développement dédiée la modélisation des problèmes dʼinteraction (M. Potier-Ferry; M. Bonnet; A. Bignonnet, eds.), Proc. VI Coll. Nat. Calcul de Struct. V1, Giens, 2003, pp. 111-118
[72] Formulation dynamique dʼun modèle de zone cohésive tridimensionnelle couplant endommagement et frottement, Revue Européenne des Eléments Finis, Volume 10 (2001), pp. 489-504
[73] Initiation and propagation of fracture in the models of Griffith and Barenblatt, Contin. Mech. Thermodyn., Volume 16 (2004), pp. 391-409
[74] Initiation of cracks with cohesive force models: a variational approach, Eur. J. Mech. A/Solids, Volume 25 (2006), pp. 649-669
[75] Existence results for unilateral quasistatic contact problems with friction and adhesion, Math. Model. Num. Anal., Volume 34 (2000) no. 5, pp. 981-1001
[76] Gradient enhanced damage for quasi-brittle materials, Internat. J. Numer. Methods Engrg., Volume 39 (1996), pp. 3391-3403
[77] Validation and internal length scale determination for a gradient damage model: application to short glass-fiber-reinforced polypropylene, Int. J. Solids Struct., Volume 36 (1999), pp. 2557-2583
[78] A mixed interface finite element for cohesive zone models, Comput. Methods Appl. Mech. Engrg., Volume 198 (2008), pp. 317-320
[79] Convergence of a gradient damage model toward a cohesive zone model, C. R. Mécanique, Volume 339 (2011), pp. 20-26
[80] A thermodynamic method for the construction of a cohesive law from a non-local damage model, Int. J. Solids Struct., Volume 46 (2009) no. 6, pp. 1476-1490
[81] A cohesive zone model which bis energetically equivalent to a gradient-enhanced coupled damage-plasticity model, Eur. J. Mech. A/Solids, Volume 29 (2010), pp. 976-989
[82] Justification of Paris-type fatigue laws from cohesive forces model via a variational approach, Contin. Mech. Thermodyn., Volume 18 (2006), pp. 23-45
[83] Contruction dʼune loi de fatigue à partir dʼun modèle de forces coh ésives : cas des fissures en mode I, C. R. Mecanique, Volume 337 (2009), pp. 166-172
[84] Contruction dʼune loi de fatigue à partir dʼun modèle de forces coh ésives : cas des fissures en mode III, C. R. Mecanique, Volume 337 (2009), pp. 53-59
[85] A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials, Part 1: Theory and numerical implementation, Mech. Mater., Volume 35 (2003), pp. 333-364
[86] Numerical simulation of quasi-brittle fracture using damaging cohesive surface, Eur. J. Mech. A/Solids, Volume 19 (2000), pp. 761-779
[87] A level set based model for damage growth: the thick level set approach, Internat. J. Numer. Methods Engrg., Volume 86 (2011) no. 3, pp. 358-380
[88] A modeling of elastic adhesive bonded joints, Adv. Math. Sci. Appl., Volume 7 (1997), pp. 711-740
[89] Asymptotic analysis of some non-linear soft thin layers, Comp. Struct., Volume 82 (2004), pp. 1929-1938
[90] Numerical study of soft adhesive bounded joints in finite elasticity, Comput. Mech., Volume 21 (1998), pp. 134-140
[91] Mesh-independent discrete numerical representation of cohesive-zone models, Engineering Fracture Mechanics, Volume 73 (2006), pp. 160-177
[92] Non-Smooth Thermo-Mechanics, Springer-Verlag, Heidelberg, 2002
Cited by Sources:
Comments - Policy