This article presents two approaches of a normal frictionless mechanical contact between an elastoplastic material and a rigid plane: a full scale finite element analysis (FEA) and a reduced model. Both of them use a representative surface element (RSE) of an experimentally measured surface roughness. The full scale FEA is performed with the Finite Element code Zset using its parallel solver. It provides the reference for the reduced model. The ingredients of the reduced model are a series of responses that are calibrated by means of FEA on a single asperity and phenomenological rules to account for asperity–asperity interaction. The reduced model is able to predict the load–displacement curve, the real contact area and the free volume between the contacting pair during the compression of a rough surface against a rigid plane. The CPU time is a few seconds for the reduced model, instead of a few days for the full FEA.
Cet article présente deux approches dʼun contact normal sans frottement entre un matériau élastoplastique et un plan rigide : une simulation complète par élements finis et un modèle simplifié. Les deux approches utilisent un élement représentatif dʼune surface rugueuse mesurée expérimentalement. Le calcul complet a été réalisé avec le code éléments finis Zset en usant dʼune résolution parallèle du problème et celui-ci fournit la solution de référence pour le modèle simplifié. Celui-ci se nourrit dʼune série de courbes de réponse calibrées par des calcul éléments finis modélisant une seule aspérité ainsi que des règles pour tenir compte de lʼinteraction entre aspérités. Le modèle est alors capable de prédire la courbe charge–déplacement, lʼaire réelle de contact et le volume libre laissé entre les deux surfaces de contact au cours de la compression dʼune surface rugueuse par un plan rigide. Le temps CPU est de quelque secondes pour le modèle simplifié contre quelques jours pour le calcul complet par éléments finis.
Mots-clés : Rugosité, Contact mécanique normal, Aire de contact réelle, Volume libre, Méthode des éléments finis, Algorithme de contact simplifié
Vladislav A. Yastrebov 1; Julian Durand 1; Henry Proudhon 1; Georges Cailletaud 1
@article{CRMECA_2011__339_7-8_473_0, author = {Vladislav A. Yastrebov and Julian Durand and Henry Proudhon and Georges Cailletaud}, title = {Rough surface contact analysis by means of the {Finite} {Element} {Method} and of a new reduced model}, journal = {Comptes Rendus. M\'ecanique}, pages = {473--490}, publisher = {Elsevier}, volume = {339}, number = {7-8}, year = {2011}, doi = {10.1016/j.crme.2011.05.006}, language = {en}, }
TY - JOUR AU - Vladislav A. Yastrebov AU - Julian Durand AU - Henry Proudhon AU - Georges Cailletaud TI - Rough surface contact analysis by means of the Finite Element Method and of a new reduced model JO - Comptes Rendus. Mécanique PY - 2011 SP - 473 EP - 490 VL - 339 IS - 7-8 PB - Elsevier DO - 10.1016/j.crme.2011.05.006 LA - en ID - CRMECA_2011__339_7-8_473_0 ER -
%0 Journal Article %A Vladislav A. Yastrebov %A Julian Durand %A Henry Proudhon %A Georges Cailletaud %T Rough surface contact analysis by means of the Finite Element Method and of a new reduced model %J Comptes Rendus. Mécanique %D 2011 %P 473-490 %V 339 %N 7-8 %I Elsevier %R 10.1016/j.crme.2011.05.006 %G en %F CRMECA_2011__339_7-8_473_0
Vladislav A. Yastrebov; Julian Durand; Henry Proudhon; Georges Cailletaud. Rough surface contact analysis by means of the Finite Element Method and of a new reduced model. Comptes Rendus. Mécanique, Surface mechanics : facts and numerical models, Volume 339 (2011) no. 7-8, pp. 473-490. doi : 10.1016/j.crme.2011.05.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.05.006/
[1] Contact of nominally flat surfaces, Proceedings of the Royal Society of London Series A, Volume 295 (1966), pp. 300-319
[2] The elastic contact of a rough surface, Wear, Volume 153 (1992), pp. 53-64
[3] A model of asperity interactions in elastic–plastic contact of rough surfaces, Journal of Tribology, Volume 123 (2001), pp. 857-864
[4] Finite element modeling of elasto–plastic contact between rough surfaces, Journal of the Mechanics and Physics of Solids, Volume 53 (2005), pp. 2385-2409
[5] Specifying surface quality – a method based on accurate measurement and comparison, Mechanical Engineering, Volume 55 (1933), p. 569
[6] Surface roughness analysis and measurement techniques, Modern Tribology Handbook, vol. 1, CRC Press, London, 2001, pp. 49-119
[7] The properties of random surface of significance in their contact, Proceedings of the Royal Society of London Series A, Volume 316 (1970), pp. 97-121
[8] Strongly anisotropic rough surfaces, Journal of Lubrification Technology, Volume 101 (1979), pp. 15-20
[9] The elastic contact of a rough surface, Wear, Volume 35 (1987), pp. 87-111
[10] An elastic–plastic model for the contact of rough surfaces, Journal of Tribology, Volume 109 (1987), pp. 257-263
[11] An asperity microcontact model incorporating the transition from elastic deformations to fully plastic flow, Journal of Tribology, Volume 122 (2000), pp. 86-93
[12] Real versus synthesized fractal surfaces: Contact mechanics and transport properties, Tribology International, Volume 42 (2009), pp. 250-259
[13] Sampling effect on contact and transport properties between fractal surfaces, Tribology International, Volume 42 (2009), pp. 1132-1145
[14] A numerical model for elastoplastic rough contact, CMES, Volume 3 (2002) no. 4, pp. 497-506
[15] The Fractal Geometry of Nature, Freeman, New York, 1982
[16] Contact mechanics of rough surfaces in tribology: Multiple asperity contact, Tribology Letters, Volume 4 (1997), pp. 1-35
[17] Theory of rubber friction and contact mechanics, Journal of Chemical Physics, Volume 115 (2001), pp. 3840-3861
[18] Fractal model of elastic–plastic contact between rough surface, Journal of Tribology, Volume 113 (1991), pp. 1-11
[19] Elastic–plastic contact model of bifractal surfaces, Wear, Volume 35 (1975), pp. 87-111
[20] C. Vallet, Fuite liquide au travers dʼun contact rugueux : application lʼétanchéité interne dʼappareils de robinetterie. PhD thesis, Ecole Nationale Supérieure dʼArts et Métiers, 2008.
[21] Implicit parallel processing in structural mechanics, Computational Mechanics Advances, Volume 2 (1994), pp. 1-24
[22] Contact mechanics for randomly rough surfaces, Surface Science Reports, Volume 61 (2006), pp. 201-227
[23] Curves and Surfaces for CAGD: A Practical Guide, Morgan Kaufmann, 2002
[24] Fretting modelling with a crystal plasticity model of Ti6Al4V, Computational Materials Science, Volume 38 (2006), pp. 113-125
[25] On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion, Journal of Physics: Condensed Matter, Volume 17 (2005), p. R1-R62
[26] P. Raghavan, DSCPACK: Domain-separator codes for the parallel solution of sparse linear systems, Tech. rep. CSE-02-004, Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, 2002.
[27] Contact Mechanics, Cambridge University Press, 1987
[28] Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia, 1988
[29] A mixed formulation for frictional contact problems prone to newton like solution method, Computer Methods in Applied Mechanics and Engineering, Volume 92 (1991), pp. 353-375
[30] A mortar-finite element formulation for frictional contact problems, International Journal for Numerical Methods in Engineering, Volume 48 (2000), pp. 1525-1547
[31] A contact domain method for large deformation frictional contact problems. Part I: Theoretical basis, Computer Methods in Applied Mechanics and Engineering, Volume 198 (2009), pp. 2591-2606
[32] Computational Contact Mechanics, Springer, 2006
Cited by Sources:
Comments - Policy