Comptes Rendus
Wave propagation within some non-homogeneous continua
Comptes Rendus. Mécanique, Volume 339 (2011) no. 12, pp. 779-788.

We investigate the elastic wave propagation within a non-homogeneous continuum according to W. Noll. After some preliminaries in geometry approach suggested by E. Cartan, the linear momentum equation of so-called weakly continuous medium is written. A first example illustrates the modal analysis of an axisymmetric non-homogeneous thick tube. The overall solution is the product of an attenuating exponential response with Kummerʼs functions. The second example deals with a Timoshenko beam involving transversal displacement and angular rotation of section. We observe the presence of various waves with spatial attenuation, either for the displacement or the section rotation, together with the occurring waves at different scale levels.

Nous nous intéressons à la propagation dʼonde élastique à travers un milieu continu non homogène au sens de W. Noll. Après quelques préliminaires sur lʼapproche géométrique suggérée par E. Cartan, la loi de la quantité de mouvement pour un milieu dit faiblement continu est écrite. Un premier exemple illustre lʼanalyse modale dʼun cylindre, à paroi épaisse, non homogène et axisymétrique. Les solutions analytiques sont sous la forme dʼun produit dʼune atténuation exponentielle avec des fonctions de Kummer. Un deuxième exemple étudie une poutre de Timoshenko avec un mouvement transversal et rotatif dʼune section. Nous observons la présence dʼondes différentes avec atténuation spatiale, que ce soit pour le déplacement ou la rotation de la section, ainsi que celles se produisant à différents niveaux dʼéchelle.

Published online:
DOI: 10.1016/j.crme.2011.09.002
Keywords: Waves, Continuum mechanics, Weakly continuous medium, Non-homogeneous continuum, Wave equation, Stop-pass frequency, Confluent hypergeometric function
Mot clés : Ondes, Milieux continus, Milieu faiblement continu, Milieu non homogène, Équation des ondes, Fréquence de coupure, Confluent hypergéometrique

Nirmal Antonio Tamarasselvame 1; Manuel Buisson 1; Lalaonirina R. Rakotomanana 1

1 Université européenne de Bretagne, IRMAR – université de Rennes 1, campus Beaulieu, 35042 Rennes cedex, France
     author = {Nirmal Antonio Tamarasselvame and Manuel Buisson and Lalaonirina R. Rakotomanana},
     title = {Wave propagation within some non-homogeneous continua},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {779--788},
     publisher = {Elsevier},
     volume = {339},
     number = {12},
     year = {2011},
     doi = {10.1016/j.crme.2011.09.002},
     language = {en},
AU  - Nirmal Antonio Tamarasselvame
AU  - Manuel Buisson
AU  - Lalaonirina R. Rakotomanana
TI  - Wave propagation within some non-homogeneous continua
JO  - Comptes Rendus. Mécanique
PY  - 2011
SP  - 779
EP  - 788
VL  - 339
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2011.09.002
LA  - en
ID  - CRMECA_2011__339_12_779_0
ER  - 
%0 Journal Article
%A Nirmal Antonio Tamarasselvame
%A Manuel Buisson
%A Lalaonirina R. Rakotomanana
%T Wave propagation within some non-homogeneous continua
%J Comptes Rendus. Mécanique
%D 2011
%P 779-788
%V 339
%N 12
%I Elsevier
%R 10.1016/j.crme.2011.09.002
%G en
%F CRMECA_2011__339_12_779_0
Nirmal Antonio Tamarasselvame; Manuel Buisson; Lalaonirina R. Rakotomanana. Wave propagation within some non-homogeneous continua. Comptes Rendus. Mécanique, Volume 339 (2011) no. 12, pp. 779-788. doi : 10.1016/j.crme.2011.09.002.

[1] M. Hirao; H. Ogi; N. Suzuki; T. Ohtani Ultrasonic attenuation peak during fatigue of polycrystalline copper, Acta Materiallia, Volume 48 (2000), pp. 517-524

[2] F. Craciun; G. Guidarelli; C. Galassi; E. Roncari Elastic wave propagation in porous piezoelectric ceramics, Ultrasonics, Volume 36 (1998), pp. 427-430

[3] D. Grady Scattering as mechanism for structured shock waves in metals, J. Mech. Phys. Solids, Volume 46 (1998) no. 10, pp. 2017-2032

[4] S. Nakagawa; K.T. Nihei; L.R. Myer Stop-pass behavior of acoustic waves in a 1D fractured system, J. Acoust. Soc. Am., Volume 107 (2000) no. 1, pp. 40-50

[5] A. Raj; R.I. Sujith Closed-form solutions for the free longitudinal vibration of inhomogeneous rods, J. of Sound and Vibration, Volume 283 (2005), pp. 1015-1030

[6] E.E. Theotokoglou; I.H. Stampouloglou The radially nonhomogeneous elastic axisymmetric problem, Int. J. of Solids and Struct., Volume 45 (2008), pp. 6535-6552

[7] S. Forest; K. Sab Cosserat overall modelling of heterogenous materials, Mechanics Research Communications, Volume 25 (1998) no. 4, pp. 449-454

[8] E. Cartan On Manifolds with an Affine Connection and the Theory of General Relativity, Bibliopolis, Napoli, 1986 (English translation of the French original by A. Magnon and A. Ashtekar)

[9] W. Noll Materially uniform simple bodies with inhomogeneities, Arch. Rat. Mech. Anal., Volume 27 (1967), pp. 1-32

[10] C.C. Wang On the geometric structure of simple bodies, or mathematical foundation for the theory of continuous distributions of dislocations, Arch. Rat. Mech. Anal., Volume 27 (1967), pp. 33-94

[11] G.A. Maugin Material Inhomogeneities in Elasticity, Chapman & Hall, 1993

[12] B.A. Bilby; E. Smith Continuous distributions of dislocations: a new application of the method of non-Riemannian geometry, Proc. Roy. Soc. London A, Volume 231 (1955), pp. 263-273

[13] K. Kondo Non-Riemannian geometry of imperfect crystals from macroscopic view-point, Memoirs of the Unifying Study of Basic Problems in Engineering Sciences by Means of Geometry, vol. I, Gakujutsu Benken Fukyu-Kai, Division D, Tokyo, 1955

[14] E. Kröner Dislocation: a new concept in the continuum theory of plasticity, J. Math. Phys., Volume 42 (1963), pp. 27-37

[15] L.R. Rakotomanana Contribution à la modélisation géométrique et thermodynamique dʼune classe de milieux faiblement continus, Arch. Rat. Mech. Anal., Volume 141 (1997), pp. 199-236

[16] F.W. Hehl; T.N. Obukhov Elie Cartanʼs torsion geometry and in field theory, an essay, Annales de la Fondation Louis de Broglie, Volume 32 (2007) no. 2–3, pp. 157-194

[17] L.R. Rakotomanana A Geometric Approach to Thermomechanics of Dissipating Continua, Birkhäuser, Boston, 2003

[18] H. Kleinert Nonholonomic mapping principle for classical and quantum mechanics in spaces with curvature and torsion, General Relativity and Gravitation, Volume 32 (2000) no. 5, pp. 769-839

[19] N. Antonio Tamarasselvame; L.R. Rakotomanana On the form-invariance of Lagrangian function of higher gradient continuum, Adv. Struct. Mater., Volume 7 (2011), pp. 291-322

[20] M. Nakahara Geometry, Topology and Physics, Graduate Student Series Physics, IOP Publishing, 1996

[21] L.R. Rakotomanana Eléments de dynamique des structures et solides déformables, Collection Mécanique, Presses Polytechniques et Universitaires Romandes, Lausanne, 2009

[22] N.A. Fleck; J.W. Hutchinson Strain gradient plasticity (J.W. Hutchinson; T.Y. Wu, eds.), Adv. in Appl. Mech., vol. 33, Academic Press, 1997, pp. 295-361

[23] F. Gonseth Les fondements des mathématiques: De la géométrie dʼEuclide à la relativité générale et à lʼintuitionisme, Librairie scientifique et technique Albert Blanchard, Paris, 1926

[24] E. Kröner Continuum theory of defects, July 28–August 29 (Balian et al., eds.), North-Holland Publishing (1981), pp. 219-315 (27–37)

[25] K.C. Le; H. Stumpf On the determination of the crystal reference in nonlinear continuum theory of dislocations, Proc. R. Soc. London A, Volume 452 (1996), pp. 359-371

[26] M.Y. Gutkin; E.C. Aifantis Dislocations and disclinations in gradient elasticity, Phys. Stat. Sol. B, Volume 214 (1999), pp. 245-284

[27] A. Menzel; P. Steimann On the continuum formulation of higher gradient plasticity for single and polycrystals, J. Mech. Phys. Solids, Volume 48 (2000), pp. 1777-1796

[28] M. Lazar An elastoplastic theory of dislocations as a physical field with torsion, J. Phys. A: Math. Gen., Volume 35 (2002), pp. 1983-2004

[29] S. Deng; J. Liu; N. Liang Wedge and twist disclinations in second strain gradient elasticity, Int. J. Solids Struct., Volume 44 (2007), pp. 3646-3665

[30] V. Popov; E. Kröner On the dynamic theory of elastoplastic medium with microstructure, Computational Material Sciences, Volume 16 (1999), pp. 218-236

[31] M.E. Gurtin Configurational Forces as Basis Concepts of Continuum Physics, Springer, New York, 2000

[32] M. Ostoja-Starzewski; A. Woods Spectral finite elements for vibrating rods and beams with random field properties, J. of Sound and Vibration, Volume 268 (2003), pp. 779-797

[33] D. Capuani; J.R. Willis Wave propagation in elastic media with cracks. Part II: Transient nonlinear response of a cracked matrix, Eur. J. Mech. A/Solids, Volume 18 (1999), pp. 159-175

[34] R.D. Mindlin; H.F. Tiersten Effects of couple-stresses in linear elasticity, Arch. Rat. Mech. Anal., Volume 11 (1962), pp. 415-448

[35] F.K. Kneubühl Oscillations and Waves, Springer Verlag, Heidelberg, 1997

[36] N. Challamel; A. Andrade; D. Camotim An analytical study on the lateral-torsional buckling, Int. J. Struct. Stabil. Dynam., Volume 7 (2007) no. 3, pp. 445-447

[37] M. Abramowitz; I.A. Stegun Handbook of Mathematical Functions, Applied Mathematics Series, vol. 55, National Bureau of Standards, 1964 (pp. 358, 555)

[38] M.A. Breazeale; J.H. Cantrell; J.S. Heyman Ultrasonic wave velocity and attenuation measurements (P.D. Edmonds, ed.), Methods of Experimental Physics 19: Ultrasonics, Academic Press, Orlando, 1981, pp. 67-135

[39] A. Vary Concepts for interrelating ultrasonic attenuation, microstructure, and fracture toughness in polycrystalline solids, Materials Evaluation, Volume 46 (1988) no. 5, pp. 642-649

[40] W.H. Prosser Advanced AE techniques in composite materials research, J. of Acoustic Emission, Volume 14 (1996) no. 3–4, p. S1-S11

[41] B. Vandenbossche; R.D. Kriz; T. Oshima Stress-wave displacement polarizations and attenuation in unidirectional composites: Theory and experiment, Res. Nondestr. Eval., Volume 8 (1996), pp. 101-123

[42] K.B. Broberg The cell model of materials, Computational Mechanics, Volume 19 (1997), pp. 447-452

[43] G.A. Maugin The Thermomechanics of Plasticity and Fracture, Cambridge University Press, Cambridge, 1992

[44] J. Oliver; M. Cervera; O. Manzoli Strong discontinuities and continuum plasticity models: The strong discontinuity approach, Int. J. Plasticity, Volume 15 (1999), pp. 319-351

[45] N. Ramaniraka; L.R. Rakotomanana Models of continuum with micro-crack distribution, Math. Mech. Solids, Volume 5 (2000), pp. 301-336

Cited by Sources:

Comments - Policy