A mesoscopic model for shear plasticity of amorphous materials in two dimensions is introduced, and studied through numerical simulations in order to elucidate the macroscopic (large scale) mechanical behavior. Plastic deformation is assumed to occur through a series of local reorganizations. Using a discretization of the mechanical fields on a discrete lattice, local reorganizations are modeled as local slip events. Local yield stresses are randomly distributed in space and invariant in time. Each plastic slip event induces an Eshelby-like long-ranged elastic stress redistribution. Focusing on quasi-static loadings and zero-temperature limit, extremal dynamics allows for recovering many of the complex features of amorphous plasticity observed experimentally and in numerical atomistic simulations in the quasi-static regime. In particular, a quantitative picture of localization, and of the anisotropic strain correlation both in the initial transient regime, and in the steady state are provided.
Mehdi Talamali 1 ; Viljo Petäjä 2 ; Damien Vandembroucq 1 ; Stéphane Roux 3
@article{CRMECA_2012__340_4-5_275_0, author = {Mehdi Talamali and Viljo Pet\"aj\"a and Damien Vandembroucq and St\'ephane Roux}, title = {Strain localization and anisotropic correlations in a mesoscopic model of amorphous plasticity}, journal = {Comptes Rendus. M\'ecanique}, pages = {275--288}, publisher = {Elsevier}, volume = {340}, number = {4-5}, year = {2012}, doi = {10.1016/j.crme.2012.02.010}, language = {en}, }
TY - JOUR AU - Mehdi Talamali AU - Viljo Petäjä AU - Damien Vandembroucq AU - Stéphane Roux TI - Strain localization and anisotropic correlations in a mesoscopic model of amorphous plasticity JO - Comptes Rendus. Mécanique PY - 2012 SP - 275 EP - 288 VL - 340 IS - 4-5 PB - Elsevier DO - 10.1016/j.crme.2012.02.010 LA - en ID - CRMECA_2012__340_4-5_275_0 ER -
%0 Journal Article %A Mehdi Talamali %A Viljo Petäjä %A Damien Vandembroucq %A Stéphane Roux %T Strain localization and anisotropic correlations in a mesoscopic model of amorphous plasticity %J Comptes Rendus. Mécanique %D 2012 %P 275-288 %V 340 %N 4-5 %I Elsevier %R 10.1016/j.crme.2012.02.010 %G en %F CRMECA_2012__340_4-5_275_0
Mehdi Talamali; Viljo Petäjä; Damien Vandembroucq; Stéphane Roux. Strain localization and anisotropic correlations in a mesoscopic model of amorphous plasticity. Comptes Rendus. Mécanique, Volume 340 (2012) no. 4-5, pp. 275-288. doi : 10.1016/j.crme.2012.02.010. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.02.010/
[1] Plastic deformation of optical glass, Nature, Volume 163 (1949), p. 323
[2] Plastic flow in glass, Proc. Roy. Soc. A, Volume 279 (1964), p. 420
[3] Role of densification in deformation of glasses under point loading, J. Am. Ceram. Soc., Volume 51 (1968), pp. 545-547
[4] Densification and flow phenomena of glass in indentation experiments, J. Non-Cryst. Sol., Volume 5 (1970), pp. 103-115
[5] Mechanical behavior of amorphous alloys, Acta Mat., Volume 55 (2007), pp. 4067-4109
[6] Complexity of shear localization in a Zr-based bulk metallic glass, Scripta Mat., Volume 61 (2009), pp. 1145-1148
[7] Temperature rise at shear bands in metallic glasses, Nat. Mater., Volume 5 (2006), pp. 15-18
[8] Plastic deformation in metallic glasses, Acta Metall., Volume 27 (1979), pp. 47-58
[9] Dynamics of viscoplastic deformation of amorphous solids, Phys. Rev. E, Volume 57 (1998), p. 7192
[10] Modeling the mechanics of amorphous solids at different length and time scales, Modell. Simul. Mater. Sci. Eng., Volume 19 (2011), p. 083001
[11] An extremal model of amorphous plasticity, Phys. Rev. Lett., Volume 89 (2002), p. 195506
[12] The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Roy. Soc. A, Volume 241 (1957), p. 376
[13] Continuum limit of amorphous elastic bodies I: A finite-size study of low-frequency harmonic vibrations, Phys. Rev. B, Volume 66 (2002), p. 174205
[14] Shear localization in a model glass, Phys. Rev. Lett., Volume 90 (2003), p. 095702
[15] Subextensive scaling in the athermal quasistatic limit of amorphous matter in plastic shear flow, Phys. Rev. Lett., Volume 93 (2004), p. 016001
[16] Universal breakdown of elasticity at the onset of material failure, Phys. Rev. Lett., Volume 93 (2004), p. 195501
[17] Continuum limit of amorphous elastic bodies II: Linear response to a point source force, Phys. Rev. B, Volume 70 (2004), p. 014203
[18] Strain localization and percolation of stable structure in amorphous solids, Phys. Rev. Lett., Volume 95 (2005), p. 095502
[19] Continuum limit of amorphous elastic bodies III: Three-dimensional systems, Phys. Rev. B, Volume 72 (2005), p. 224206
[20] Amorphous systems in athermal, quasistatic shear, Phys. Rev. E, Volume 74 (2006), p. 016118
[21] Plastic response of a 2D Lennard-Jones amorphous solid: Detailed analysis of the local rearrangements at very slow strain rate, Eur. Phys. J. E, Volume 20 (2006), p. 355
[22] Evaluation of the disorder temperature and free volume formalisms via simulations of shear banding in amorphous solids, Phys. Rev. Lett., Volume 98 (2007), p. 185505
[23] Evolution of displacements and strains in sheared amorphous solids, J. Phys. Cond. Matt., Volume 20 (2008), p. 244128
[24] On the study of local stress rearrangements during quasistatic plastic shear of a model glass: do local stress components contain enough information?, Eur. Phys. J. E, Volume 26 (2008), pp. 283-293
[25] Local elasticity map and plasticity in a model Lennard-Jones glass, Phys. Rev. E, Volume 80 (2009), p. 026112
[26] Anisotropic power law strain correlations in sheared amorphous 2D solids, Phys. Rev. Lett., Volume 102 (2009), p. 225502
[27] Rate-dependent avalanche size in athermally sheared amorphous solids, Phys. Rev. Lett., Volume 103 (2009), p. 065501
[28] Scaling theory for steady-state plastic flows in amorphous solids, Phys. Rev. E, Volume 80 (2009), p. 026128
[29] A study of the static yield stress in a binary Lennard-Jones glass, J. Chem. Phys., Volume 120 (2004), pp. 2788-2801
[30] Atomic scale simulations of strain localization in three-dimensional model amorphous solids, Phys. Rev. B, Volume 73 (2006), p. 214201
[31] Yield surface of a simulated metallic glass, Acta Mat., Volume 51 (2003), pp. 5399-5411
[32] High-density liquidlike component facilitates plastic flow in a model amorphous silicon system, Phys. Rev. Lett., Volume 93 (2004), p. 025505
[33] Liquidlike atomic environments act as plasticity carriers in amorphous silicon, Phys. Rev. B, Volume 72 (2005), p. 245205
[34] Autocatalytic avalanches of unit inelastic shearing events are the mechanism of plastic deformation in amorphous silicon, Phys. Rev. B, Volume 72 (2005), p. 245206
[35] Atomistic simulations of elastic and plastic properties in amorphous silicon, Europhys. Lett., Volume 86 (2009), p. 66005
[36] Yield conditions for deformation of amorphous polymer glasses, Phys. Rev. E, Volume 64 (2001), p. 051801
[37] Shear yielding of amorphous glassy solids: Effect of temperature and strain rate, Phys. Rev. E, Volume 68 (2003), p. 011507
[38] Inhomogeneous elastic response of silica glass, Phys. Rev. Lett., Volume 97 (2006), p. 055501
[39] Plasticity-induced structural anisotropy of silica glass, Phys. Rev. Lett., Volume 102 (2009), p. 195501
[40] Identification and characterization of potential shear transformation zones in metallic glasses, Phys. Rev. Lett., Volume 100 (2008), p. 255901
[41] Distribution of thermally activated plastic events in a flowing glass, Phys. Rev. Lett., Volume 102 (2009), p. 235503
[42] Particle displacements in the elastic deformation of amorphous materials: Local fluctuations vs. non-affine field, Europhys. Lett., Volume 80 (2007), p. 16003
[43] Locality and nonlocality in elastoplastic responses of amorphous solids, Phys. Rev. E, Volume 79 (2009), p. 066109
[44] A stochastic model for continuum elasto-plastic behavior. I. Numerical approach and strain localization, Modell. Simul. Mater. Sci. Eng., Volume 2 (1994), p. 167
[45] A stochastic model for continuum elasto-plastic behavior. II. A study of the glass transition and structural relaxation, Modell. Simul. Mater. Sci. Eng., Volume 2 (1994), p. 185
[46] A stochastic model for continuum elasto-plastic behavior. III. Plasticity in ordered versus disordered solids, Modell. Simul. Mater. Sci. Eng., Volume 2 (1994), p. 203
[47] Mesoscale modeling of amorphous metals by shear transformation zone dynamics, Acta Mat., Volume 57 (2009), pp. 2823-2833
[48] Self-organized criticality in a crack-propagation model of earthquakes, Phys. Rev. A, Volume 43 (1991), pp. 625-630
[49] Earthquake failure sequences along a cellular fault zone in a three-dimensional elastic solid containing asperity and nonasperity regions, J. Geophys. Res., Volume 98 (1993), pp. 14109-14131
[50] Threshold critical dynamics of driven interfaces in random media, Phys. Rev. B, Volume 48 (1993), pp. 7030-7042
[51] Nonequilibrium dynamics of interfaces and lines, Phys. Rep., Volume 301 (1998), pp. 85-112
[52] Slow flows of yield stress fluids: complex spatio-temporal behaviour within a simple elasto-plastic model, Phys. Rev. E, Volume 71 (2005), p. 010501(R)
[53] Kinetic theory of plastic flow in soft glassy materials, Phys. Rev. Lett., Volume 103 (2009), p. 036001
[54] Dynamical noise and avalanches in quasi-static flow of amorphous materials | arXiv
[55] Rheology of soft glassy materials, Phys. Rev. Lett., Volume 78 (1997), pp. 2020-2023
[56] Strain localization driven by structural relaxation in sheared amorphous solids, Phys. Rev. E, Volume 76 (2007), p. 046119
[57] Internal stress in a model elastoplastic fluid, Phys. Rev. Lett., Volume 95 (2005), p. 108301
[58] Fluctuation phenomena in crystal plasticity – a continuum model, J. Stat. Mech., Volume P08004 (2005), pp. 79-97
[59] Micromechanical model for deformation in solids with universal predictions for stress–strain curves and slip avalanches, Phys. Rev. Lett., Volume 102 (2009), p. 175501
[60] Modeling of the plastic behavior of inhomogeneous media, J. Eng. Mater. Tech., Volume 106 (1984), pp. 295-298
[61] Continuum micromechanics: Survey, J. Eng. Mech., Volume 128 (2002), pp. 808-816
[62] From macroscopic yield criteria to atomic stresses in polymer glasses, Phys. Rev. E, Volume 81 (2010), p. 011804
[63] Path independent integrals to identify two-dimensional localized plastic events, Phys. Rev. E, Volume 78 (2008), p. 016109
[64] Density hardening plasticity and mechanical aging of silica glass under pressure: A Raman spectroscopic study, J. Phys. Cond. Mat., Volume 20 (2008), p. 485221
[65] Hardening of a metallic glass during cyclic loading in the elastic range, Appl. Phys. Lett., Volume 92 (2008), p. 171911
[66] Scaling of directed polymers in random media, Phys. Rev. Lett., Volume 58 (1987), pp. 2087-2090
[67] Avalanches, precursors and finite size fluctuations in a mesoscopic model of amorphous plasticity, Phys. Rev. E, Volume 84 (2011), p. 016115
[68] Mechanical noise dependent aging and shear-banding behavior in a mesoscopic model of amorphous plasticity, Phys. Rev. B, Volume 84 (2011), p. 134210
Cité par Sources :
Commentaires - Politique