This article presents a continuum-level constitutive model of a single crystal deforming by dislocation climb, accounting for crystallography and dislocation/point-defect interactions. The proposed constitutive description represents an improvement over a previous recent model, which extended the rate-sensitivity approach for single crystal plasticity by dislocation glide to consider the deformation geometry of dislocation climb under the assumption of instantaneous restoration of equilibrium concentration of vacancies near climbing dislocations. The key element of the new model is a chemical stress parameter, which represents the additional driving force on climbing dislocations due the excess vacancy concentration. The original and new versions of the crystallographic model of climb are compared through a simple example of a strongly anisotropic single crystal that illustrates the differences in response due to the consideration or not of the chemical driving force for climb.
Ricardo A. Lebensohn 1; R.A. Holt 2; A. Caro 1; A. Alankar 1; C.N. Tomé 1
@article{CRMECA_2012__340_4-5_289_0, author = {Ricardo A. Lebensohn and R.A. Holt and A. Caro and A. Alankar and C.N. Tom\'e}, title = {Improved constitutive description of single crystal viscoplastic deformation by dislocation climb}, journal = {Comptes Rendus. M\'ecanique}, pages = {289--295}, publisher = {Elsevier}, volume = {340}, number = {4-5}, year = {2012}, doi = {10.1016/j.crme.2012.02.011}, language = {en}, }
TY - JOUR AU - Ricardo A. Lebensohn AU - R.A. Holt AU - A. Caro AU - A. Alankar AU - C.N. Tomé TI - Improved constitutive description of single crystal viscoplastic deformation by dislocation climb JO - Comptes Rendus. Mécanique PY - 2012 SP - 289 EP - 295 VL - 340 IS - 4-5 PB - Elsevier DO - 10.1016/j.crme.2012.02.011 LA - en ID - CRMECA_2012__340_4-5_289_0 ER -
%0 Journal Article %A Ricardo A. Lebensohn %A R.A. Holt %A A. Caro %A A. Alankar %A C.N. Tomé %T Improved constitutive description of single crystal viscoplastic deformation by dislocation climb %J Comptes Rendus. Mécanique %D 2012 %P 289-295 %V 340 %N 4-5 %I Elsevier %R 10.1016/j.crme.2012.02.011 %G en %F CRMECA_2012__340_4-5_289_0
Ricardo A. Lebensohn; R.A. Holt; A. Caro; A. Alankar; C.N. Tomé. Improved constitutive description of single crystal viscoplastic deformation by dislocation climb. Comptes Rendus. Mécanique, Volume 340 (2012) no. 4-5, pp. 289-295. doi : 10.1016/j.crme.2012.02.011. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.02.011/
[1] Deformation-Mechanism Maps, Pergamon Press, Oxford, 1982
[2] Modelling the mechanical response of polycrystals deforming by climb and glide, Phil. Mag., Volume 90 (2010), pp. 567-583
[3] Y. Rougier, T. Bretheau, A. Zaoui, A new approach to determine the zircaloy constitutive behavior under irradiation, in: K.F. Kussmaul (Ed.), Proceedings of SMiRT-12, Stuttgart, 1993.
[4] Y. Rougier, Etude du comportement sous irradiation: modélisation micromécanique de lʼelastoviscoplasticite, PhD thesis, Ecole Polytechnique, Palaiseau, France, 1994.
[5] Analysis of accelerated irradiation growth in Zr–2.5% Nb pressure tubes, Phil. Mag., Volume 80 (2000), pp. 1407-1424
[6] A method for linking thermally activated dislocation mechanisms of yielding with continuum plasticity theory, Phil. Mag., Volume 83 (2003), pp. 3783-3808
[7] The forces exerted on dislocations and the stress fields produced by them, Phys. Rev., Volume 80 (1950), pp. 436-439
[8] Theory of Dislocations, McGraw–Hill, New York, 1968
[9] The Peach–Koehler equation for the force on a dislocation modified for hydrostatic pressure, Phil. Mag., Volume 11 (1965), pp. 1217-1223
[10] Texture development and strain hardening in rate-dependent polycrystals, Acta Metall., Volume 33 (1985), pp. 923-953
[11] A micromechanical approach to inelastic behaviour of metals, Int. J. Plasticity, Volume 8 (1992), pp. 55-73
[12] Constitutive equations for cyclic plasticity and cyclic viscoplasticity, Int. J. Plasticity, Volume 5 (1989), pp. 247-302
[13] A theory of irradiated and thermal creep by dislocation climb, J. Nucl. Mater., Volume 103 (1982), pp. 1263-1268
[14] Introducing dislocation climb by bulk diffusion in discrete dislocation dynamics, Phil. Mag., Volume 88 (2008), pp. 899-925
[15] A. Alankar, et al., in preparation.
Cited by Sources:
Comments - Policy