Comptes Rendus
Improved constitutive description of single crystal viscoplastic deformation by dislocation climb
Comptes Rendus. Mécanique, Volume 340 (2012) no. 4-5, pp. 289-295.

This article presents a continuum-level constitutive model of a single crystal deforming by dislocation climb, accounting for crystallography and dislocation/point-defect interactions. The proposed constitutive description represents an improvement over a previous recent model, which extended the rate-sensitivity approach for single crystal plasticity by dislocation glide to consider the deformation geometry of dislocation climb under the assumption of instantaneous restoration of equilibrium concentration of vacancies near climbing dislocations. The key element of the new model is a chemical stress parameter, which represents the additional driving force on climbing dislocations due the excess vacancy concentration. The original and new versions of the crystallographic model of climb are compared through a simple example of a strongly anisotropic single crystal that illustrates the differences in response due to the consideration or not of the chemical driving force for climb.

Published online:
DOI: 10.1016/j.crme.2012.02.011
Keywords: Single crystal, Crystal plasticity, Creep, Dislocation climb

Ricardo A. Lebensohn 1; R.A. Holt 2; A. Caro 1; A. Alankar 1; C.N. Tomé 1

1 Materials Science and Technology Division, Los Alamos National Laboratory, MS G755, Los Alamos, NM 87545, USA
2 Department of Mechanical and Materials Engineering, Queenʼs University at Kingston, K7L 3N6, Canada
@article{CRMECA_2012__340_4-5_289_0,
     author = {Ricardo A. Lebensohn and R.A. Holt and A. Caro and A. Alankar and C.N. Tom\'e},
     title = {Improved constitutive description of single crystal viscoplastic deformation by dislocation climb},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {289--295},
     publisher = {Elsevier},
     volume = {340},
     number = {4-5},
     year = {2012},
     doi = {10.1016/j.crme.2012.02.011},
     language = {en},
}
TY  - JOUR
AU  - Ricardo A. Lebensohn
AU  - R.A. Holt
AU  - A. Caro
AU  - A. Alankar
AU  - C.N. Tomé
TI  - Improved constitutive description of single crystal viscoplastic deformation by dislocation climb
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 289
EP  - 295
VL  - 340
IS  - 4-5
PB  - Elsevier
DO  - 10.1016/j.crme.2012.02.011
LA  - en
ID  - CRMECA_2012__340_4-5_289_0
ER  - 
%0 Journal Article
%A Ricardo A. Lebensohn
%A R.A. Holt
%A A. Caro
%A A. Alankar
%A C.N. Tomé
%T Improved constitutive description of single crystal viscoplastic deformation by dislocation climb
%J Comptes Rendus. Mécanique
%D 2012
%P 289-295
%V 340
%N 4-5
%I Elsevier
%R 10.1016/j.crme.2012.02.011
%G en
%F CRMECA_2012__340_4-5_289_0
Ricardo A. Lebensohn; R.A. Holt; A. Caro; A. Alankar; C.N. Tomé. Improved constitutive description of single crystal viscoplastic deformation by dislocation climb. Comptes Rendus. Mécanique, Volume 340 (2012) no. 4-5, pp. 289-295. doi : 10.1016/j.crme.2012.02.011. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.02.011/

[1] H.J. Frost; M.F. Ashby Deformation-Mechanism Maps, Pergamon Press, Oxford, 1982

[2] R.A. Lebensohn; C.S. Hartley; C.N. Tomé; O. Castelnau Modelling the mechanical response of polycrystals deforming by climb and glide, Phil. Mag., Volume 90 (2010), pp. 567-583

[3] Y. Rougier, T. Bretheau, A. Zaoui, A new approach to determine the zircaloy constitutive behavior under irradiation, in: K.F. Kussmaul (Ed.), Proceedings of SMiRT-12, Stuttgart, 1993.

[4] Y. Rougier, Etude du comportement sous irradiation: modélisation micromécanique de lʼelastoviscoplasticite, PhD thesis, Ecole Polytechnique, Palaiseau, France, 1994.

[5] C.N. Tomé; N. Christodoulou Analysis of accelerated irradiation growth in Zr–2.5% Nb pressure tubes, Phil. Mag., Volume 80 (2000), pp. 1407-1424

[6] C.S. Hartley A method for linking thermally activated dislocation mechanisms of yielding with continuum plasticity theory, Phil. Mag., Volume 83 (2003), pp. 3783-3808

[7] M. Peach; J.S. Koehler The forces exerted on dislocations and the stress fields produced by them, Phys. Rev., Volume 80 (1950), pp. 436-439

[8] J.P. Hirth; J. Lothe Theory of Dislocations, McGraw–Hill, New York, 1968

[9] J. Weertman The Peach–Koehler equation for the force on a dislocation modified for hydrostatic pressure, Phil. Mag., Volume 11 (1965), pp. 1217-1223

[10] R.J. Asaro; A. Neddleman Texture development and strain hardening in rate-dependent polycrystals, Acta Metall., Volume 33 (1985), pp. 923-953

[11] G. Cailletaud A micromechanical approach to inelastic behaviour of metals, Int. J. Plasticity, Volume 8 (1992), pp. 55-73

[12] J.L. Chaboche Constitutive equations for cyclic plasticity and cyclic viscoplasticity, Int. J. Plasticity, Volume 5 (1989), pp. 247-302

[13] R. Bullough; M.W. Finnis; M.H. Wood A theory of irradiated and thermal creep by dislocation climb, J. Nucl. Mater., Volume 103 (1982), pp. 1263-1268

[14] D. Mordehai; E. Clouet; M. Fivel; M. Verdier Introducing dislocation climb by bulk diffusion in discrete dislocation dynamics, Phil. Mag., Volume 88 (2008), pp. 899-925

[15] A. Alankar, et al., in preparation.

Cited by Sources:

Comments - Policy