Comptes Rendus
Generalised continuum modelling of grain size effects in polycrystals
Comptes Rendus. Mécanique, Volume 340 (2012) no. 4-5, pp. 261-274.

The effect of the dislocation density tensor is introduced into the classical crystal plasticity framework by means of the micromorphic theory of single crystals. A computational homogenisation strategy is presented in order to describe the global and local responses of two-dimensional polycrystalline aggregates for grain sizes ranging from 1 to 200 microns. The model is shown to naturally predict a size-dependent kinematic hardening behaviour which is responsible for the observed strong size effects. The yield stress at a given averaged plastic strain is shown to follow a power law scaling relation for grain sizes larger than a critical one. The field of plastic deformation is also strongly affected by grain size, whereby micron-size grains lead to the formation of intense slip bands crossing several grains.

Published online:
DOI: 10.1016/j.crme.2012.02.009
Keywords: Crystal plasticity, Strain gradient plasticity, Micromorphic theory, Kinematic hardening, Dislocation density tensor, Grain boundary, Polycrystalline aggregate, Hall–Petch effect
Nicolas M. Cordero 1; Samuel Forest 1; Esteban P. Busso 1

1 MINES ParisTech, centre des matériaux, CNRS UMR 7633, BP 87, 91003 Evry cedex, France
@article{CRMECA_2012__340_4-5_261_0,
     author = {Nicolas M. Cordero and Samuel Forest and Esteban P. Busso},
     title = {Generalised continuum modelling of grain size effects in polycrystals},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {261--274},
     publisher = {Elsevier},
     volume = {340},
     number = {4-5},
     year = {2012},
     doi = {10.1016/j.crme.2012.02.009},
     language = {en},
}
TY  - JOUR
AU  - Nicolas M. Cordero
AU  - Samuel Forest
AU  - Esteban P. Busso
TI  - Generalised continuum modelling of grain size effects in polycrystals
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 261
EP  - 274
VL  - 340
IS  - 4-5
PB  - Elsevier
DO  - 10.1016/j.crme.2012.02.009
LA  - en
ID  - CRMECA_2012__340_4-5_261_0
ER  - 
%0 Journal Article
%A Nicolas M. Cordero
%A Samuel Forest
%A Esteban P. Busso
%T Generalised continuum modelling of grain size effects in polycrystals
%J Comptes Rendus. Mécanique
%D 2012
%P 261-274
%V 340
%N 4-5
%I Elsevier
%R 10.1016/j.crme.2012.02.009
%G en
%F CRMECA_2012__340_4-5_261_0
Nicolas M. Cordero; Samuel Forest; Esteban P. Busso. Generalised continuum modelling of grain size effects in polycrystals. Comptes Rendus. Mécanique, Volume 340 (2012) no. 4-5, pp. 261-274. doi : 10.1016/j.crme.2012.02.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.02.009/

[1] E. Sanchez-Palencia; A. Zaoui Homogenization Techniques for Composite Media, Lecture Notes in Physics, vol. 272, Springer, Berlin, 1987

[2] A. Zaoui Continuum micromechanics: Survey, ASCE Journal of Engineering Mechanics, Volume 128 (2002), pp. 808-816

[3] B. Devincre; T. Hoc; L. Kubin Dislocation mean free paths and strain hardening of crystals, Science, Volume 320 (2008), pp. 1745-1748

[4] G. Cailletaud; S. Forest; D. Jeulin; F. Feyel; I. Galliet; V. Mounoury; S. Quilici Some elements of microstructural mechanics, Computational Materials Science, Volume 27 (2003), pp. 351-374

[5] J.M. Pipard; N. Nicaise; S. Berbenni; O. Bouaziz; M. Berveiller A new mean field micromechanical approach to capture grain size effects, Computational Materials Science, Volume 45 (2009), pp. 604-610

[6] G.J. Weng A micromechanical theory of grain-size dependence in metal plasticity, Journal of the Mechanics and Physics of Solids, Volume 31 (1983), pp. 193-203

[7] V. Marcadon; E. Hervé; A. Zaoui Micromechanical modeling of packing and size effects in particulate composites, International Journal of Solids and Structures, Volume 44 (2007), pp. 8213-8228

[8] M. Cherkaoui; L. Capolungo Atomistic and Continuum Modeling of Nanocrystalline Materials: Deformation Mechanisms and Scale Transition, Springer Verlag, 2009

[9] R.J. Asaro Elastic–plastic memory and kinematic hardening, Acta Metallurgica, Volume 23 (1975), pp. 1255-1265

[10] S. Lefebvre, Etude expérimentale et simulation numérique du comportement mécanique des structures sub-micrométriques de cuivre, PhD, Ecole Centrale Paris, 2006.

[11] S. Forest; R. Sedláček Plastic slip distribution in two-phase laminate microstructures: Dislocation-based vs. generalized-continuum approaches, Philosophical Magazine A, Volume 83 (2003), pp. 245-276

[12] S. Forest Some links between Cosserat, strain gradient crystal plasticity and the statistical theory of dislocations, Philosophical Magazine, Volume 88 (2008), pp. 3549-3563

[13] A. Acharya; A.J. Beaudoin Grain size effects in viscoplastic polycrystals at moderate strains, Journal of the Mechanics and Physics of Solids, Volume 48 (2000), pp. 2213-2230

[14] K.S. Cheong; E.P. Busso; A. Arsenlis A study of microstructural length scale effects on the behavior of FCC polycrystals using strain gradient concepts, International Journal of Plasticity, Volume 21 (2005), pp. 1797-1814

[15] C.F. Niordson; J.W. Hutchinson On lower order strain gradient plasticity theories, European Journal of Mechanics A/Solids, Volume 22 (2003), pp. 771-778

[16] E.C. Aifantis The physics of plastic deformation, International Journal of Plasticity, Volume 3 (1987), pp. 211-248

[17] R.D. Mindlin; N.N. Eshel On first strain gradient theories in linear elasticity, International Journal of Solids and Structures, Volume 4 (1968), pp. 109-124

[18] N.A. Fleck; J.W. Hutchinson Strain gradient plasticity, Advances in Applied Mechanics, Volume 33 (1997), pp. 295-361

[19] S. Forest; G. Cailletaud; R. Sievert A Cosserat theory for elastoviscoplastic single crystals at finite deformation, Archives of Mechanics, Volume 49 (1997), pp. 705-736

[20] S. Forest; F. Barbe; G. Cailletaud Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multiphase materials, International Journal of Solids and Structures, Volume 37 (2000), pp. 7105-7126

[21] J.D. Clayton; D.J. Bamman; D.L. McDowell A geometric framework for the kinematics of crystals with defects, Philosophical Magazine, Volume 85 (2005), pp. 3983-4010

[22] J.D. Clayton; D.L. McDowell; D.J. Bammann Modeling dislocations and disclinations with finite micropolar elastoplasticity, International Journal of Plasticity, Volume 22 (2006), pp. 210-256

[23] J.R. Mayeur; D.L. McDowell; D.J. Bammann Dislocation-based micropolar single crystal plasticity: Comparison of multi- and single criterion theories, Journal of the Mechanics and Physics of Solids, Volume 59 (2011), pp. 398-422

[24] J. Mandel Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques, International Journal of Solids and Structures, Volume 9 (1973), pp. 725-740

[25] M.E. Gurtin A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations, Journal of the Mechanics and Physics of Solids, Volume 50 (2002), pp. 5-32

[26] M.E. Gurtin; L. Anand Thermodynamics applied to gradient theories involving the accumulated plastic strain: The theories of Aifantis and Fleck & Hutchinson and their generalization, Journal of the Mechanics and Physics of Solids, Volume 57 (2009), pp. 405-421

[27] N.M. Cordero; A. Gaubert; S. Forest; E.P. Busso; F. Gallerneau; S. Kruch Size effects in generalised continuum crystal plasticity for two-phase laminates, Journal of the Mechanics and Physics of Solids, Volume 58 (2010), pp. 1963-1994

[28] A.C. Eringen Microcontinuum Field Theories, Springer, New York, 1999

[29] S. Forest The micromorphic approach for gradient elasticity, viscoplasticity and damage, ASCE Journal of Engineering Mechanics, Volume 135 (2009), pp. 117-131

[30] C.J. Bayley; W.A.M. Brekelmans; M.G.D. Geers A three-dimensional dislocation field crystal plasticity approach applied to miniaturized structures, Philosophical Magazine, Volume 87 (2007), pp. 1361-1378

[31] S. Bargmann; M. Ekh; K. Runesson; B. Svendsen Modeling of polycrystals with gradient crystal plasticity: A comparison of strategies, Philosophical Magazine, Volume 90 (2010), pp. 1263-1288

[32] O. Aslan; N.M. Cordero; A. Gaubert; S. Forest Micromorphic approach to single crystal plasticity and damage, International Journal of Engineering Science, Volume 49 (2011), pp. 1311-1325 | DOI

[33] B. Svendsen Continuum thermodynamic models for crystal plasticity including the effects of geometrically-necessary dislocations, Journal of the Mechanics and Physics of Solids, Volume 50 (2002), pp. 1297-1329

[34] T. Liebe; A. Menzel; P. Steinmann Theory and numerics of geometrically non-linear gradient plasticity, International Journal of Engineering Science, Volume 41 (2003), pp. 1603-1629

[35] H. Gao; Y. Huang; W.D. Nix; J.W. Hutchinson Mechanism-based strain gradient plasticity – I. Theory, Journal of the Mechanics and Physics of Solids, Volume 47 (1999), pp. 1239-1263

[36] K.S. Cheong; E.P. Busso Effects of lattice misorientations in FCC polycrystals, Journal of the Mechanics and Physics of Solids, Volume 54 (2006), pp. 671-689

[37] S. Forest; F. Pradel; K. Sab Asymptotic analysis of heterogeneous Cosserat media, International Journal of Solids and Structures, Volume 38 (2001), pp. 4585-4608

[38] V.P. Bennett; D.L. McDowell Crack tip displacements of microstructurally small surface cracks in single phase ductile polycrystals, Engineering Fracture Mechanics, Volume 70 (2003), pp. 185-207

[39] N.M. Cordero; S. Forest; E.P. Busso; S. Berbenni; M. Cherkaoui Grain size effects on plastic strain and dislocation density tensor fields in metal polycrystals, Computational Materials Science, Volume 52 (2012), pp. 7-13 | DOI

[40] N.M. Cordero; S. Forest; E.P. Busso; S. Berbenni; M. Cherkaoui Grain Size Effects in Generalised Continuum Crystal Plasticity, Wiley, 2011

[41] H.J. Chang; A. Gaubert; M. Fivel; S. Berbenni; O. Bouaziz; S. Forest Analysis of particle induced dislocation structures using three-dimensional dislocation dynamics and strain gradient plasticity, Computational Materials Science, Volume 52 (2012), pp. 33-39 | DOI

[42] N. Ohno; D. Okumura Higher-order stress and grain size effects due to self-energy of geometrically necessary dislocations, Journal of the Mechanics and Physics of Solids, Volume 55 (2007), pp. 1879-1898

[43] C.J. Bayley; W.A.M. Brekelmans; M.G.D. Geers A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity, International Journal of Solids and Structures, Volume 43 (2006), pp. 7268-7286

[44] S. Berbenni; M. Berveiller; T. Richeton Intra-granular plastic slip heterogeneities: Discrete vs. mean field approaches, International Journal of Solids and Structures, Volume 45 (2008), pp. 4147-4172

[45] C. Collard; V. Favier; S. Berbenni; M. Berveiller Role of discrete intra-granular slip bands on the strain-hardening of polycrystals, International Journal of Plasticity, Volume 26 (2010), pp. 310-328

[46] S. Lefebvre; B. Devincre; T. Hoc Yield stress strengthening in ultrafine-grained metals: A two-dimensional simulation of dislocation dynamics, Journal of the Mechanics and Physics of Solids, Volume 55 (2007), pp. 788-802

[47] F. Šiška; D. Weygand; S. Forest; P. Gumbsch Comparison of mechanical behaviour of thin film simulated by discrete dislocation dynamics and continuum crystal plasticity, Computational Materials Science, Volume 45 (2009), pp. 793-799

Cited by Sources:

Comments - Policy


Articles of potential interest

A numerical study of reversible plasticity using continuum dislocation mechanics

Stéphane Berbenni; Ricardo A. Lebensohn

C. R. Phys (2021)


Interface controlled plastic flow modelled by strain gradient plasticity theory

Thomas Pardoen; Thierry J. Massart

C. R. Méca (2012)


Plastic yielding and work hardening of single crystals in a soft device

K.C. Le; Q.S. Nguyen

C. R. Méca (2009)