Comptes Rendus
On modeling shape memory polymers as thermoelastic two-phase composite materials
Comptes Rendus. Mécanique, Volume 340 (2012) no. 4-5, pp. 338-348.

A model has been proposed recently, which describes the experimentally observed mechanical behavior of some shape memory polymers. It considers a purely thermoelastic behavior, without strain rate effects, and assumes essentially that the polymer can be considered as a two-phase composite, with glassy and rubbery phases having volume fractions that depend on temperature only. Since a uniform stress hypothesis was used in the original formulation, with an inconsistency when thermal expansion was considered, this model is revisited here by taking advantage of many results that have been established in the theory of composite materials. It is shown, especially, that a uniform strain hypothesis is more appropriate than assuming a uniform stress.

Published online:
DOI: 10.1016/j.crme.2012.02.016
Keywords: Shape memory, Polymers

Pierre Gilormini 1; Julie Diani 1

1 Laboratoire procédés et ingénierie en mécanique et matériaux, Arts et Métiers ParisTech, CNRS, 151, boulevard de lʼhôpital, 75013 Paris, France
@article{CRMECA_2012__340_4-5_338_0,
     author = {Pierre Gilormini and Julie Diani},
     title = {On modeling shape memory polymers as thermoelastic two-phase composite materials},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {338--348},
     publisher = {Elsevier},
     volume = {340},
     number = {4-5},
     year = {2012},
     doi = {10.1016/j.crme.2012.02.016},
     language = {en},
}
TY  - JOUR
AU  - Pierre Gilormini
AU  - Julie Diani
TI  - On modeling shape memory polymers as thermoelastic two-phase composite materials
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 338
EP  - 348
VL  - 340
IS  - 4-5
PB  - Elsevier
DO  - 10.1016/j.crme.2012.02.016
LA  - en
ID  - CRMECA_2012__340_4-5_338_0
ER  - 
%0 Journal Article
%A Pierre Gilormini
%A Julie Diani
%T On modeling shape memory polymers as thermoelastic two-phase composite materials
%J Comptes Rendus. Mécanique
%D 2012
%P 338-348
%V 340
%N 4-5
%I Elsevier
%R 10.1016/j.crme.2012.02.016
%G en
%F CRMECA_2012__340_4-5_338_0
Pierre Gilormini; Julie Diani. On modeling shape memory polymers as thermoelastic two-phase composite materials. Comptes Rendus. Mécanique, Volume 340 (2012) no. 4-5, pp. 338-348. doi : 10.1016/j.crme.2012.02.016. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.02.016/

[1] C. Liu; H. Qin; P.T. Mather Review of progress in shape-memory polymers, J. Mater. Chem., Volume 17 (2007), pp. 1543-1558

[2] I.A. Rousseau Challenges of shape memory polymers: a review of the progress toward overcoming SMPSʼs limitations, Polym. Eng. Sci., Volume 48 (2008), pp. 2075-2287

[3] P.T. Mather; X. Luo; I.A. Rousseau Shape memory polymer research, Annu. Rev. Mater. Res., Volume 39 (2009), pp. 445-471

[4] H. Tobushi; T. Hashimoto; S. Hayashi; E. Yamada Thermomechanical constitutive modeling in shape memory polymer of polyurethane series, J. Intell. Mater. Syst. Struct., Volume 8 (1997), pp. 711-718

[5] A. Bhattacharyya; H. Tobushi Analysis of the isothermal mechanical response of a shape memory polymer rheological model, Polym. Eng. Sci., Volume 40 (2000), pp. 2498-2510

[6] H. Tobushi; K. Okumura; S. Hayashi; N. Ito Thermomechanical constitutive model of shape memory polymer, Mech. Mater., Volume 33 (2001), pp. 545-554

[7] J.R. Lin; L.W. Chen Shape-memorized crosslinked ester-type polyurethane and its mechanical viscoelastic model, J. Appl. Polym. Sci., Volume 73 (1999), pp. 1305-1319

[8] V. Kafka Shape memory polymers: a mesoscale model of the internal mechanism leading to the SM phenomena, Int. J. Plast., Volume 24 (2008), pp. 1533-1548

[9] H.J. Qi; T.D. Nguyen; F. Castro; C.M. Yakacki; R. Shandas Finite deformation thermo-mechanical behavior of thermally induced shape memory polymers, J. Mech. Phys. Solids, Volume 56 (2008), pp. 1730-1751

[10] T.D. Nguyen; H.J. Qi; F. Castro; K.N. Long A thermoviscoelastic model for amorphous shape memory polymers: incorporating structural and stress relaxation, J. Mech. Phys. Solids, Volume 56 (2008), pp. 2792-2814

[11] V. Srivastava; S.A. Chester; L. Anand Thermally actuated shape-memory polymers: experiments, theory, and numerical simulations, J. Mech. Phys. Solids, Volume 58 (2010), pp. 1100-1124

[12] G. Barot; I.J. Rao Constitutive modeling of the mechanics associated with crystallizable shape memory polymers, Z. Angew. Math. Phys., Volume 57 (2006), pp. 652-681

[13] G. Barot; I.J. Rao; K.R. Rajagopal A thermodynamic framework for the modeling of crystallizable shape memory polymers, Int. J. Eng. Sci., Volume 46 (2008), pp. 325-351

[14] Y. Liu; K. Gall; M.L. Dunn; A.R. Greenberg; J. Diani Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modeling, Int. J. Plast., Volume 22 (2006), pp. 279-313

[15] J. Diani; Y. Liu; K. Gall Finite strain 3D thermoviscoelastic constitutive model for shape memory polymers, Polym. Eng. Sci., Volume 46 (2006), pp. 484-492

[16] Y.C. Chen; D.C. Lagoudas A constitutive theory for shape memory polymers. Part I: Large deformations, J. Mech. Phys. Solids, Volume 56 (2008), pp. 1752-1765

[17] Y.C. Chen; D.C. Lagoudas A constitutive theory for shape memory polymers. Part II: A linearized model for small deformations, J. Mech. Phys. Solids, Volume 56 (2008), pp. 1766-1778

[18] Z.D. Wang; D.F. Li; Z.Y. Xiong; R.N. Chang Modeling thermomechanical behaviors of shape memory polymer, J. Appl. Polym. Sci., Volume 113 (2009), pp. 651-656

[19] S. Reese; M. Böl; D. Christ Finite element-based multi-phase modelling of shape memory polymer stents, Comput. Methods Appl. Mech. Eng., Volume 199 (2010), pp. 1276-1286

[20] J.R. Willis The overall elastic response of composite materials, ASME J. Appl. Mech., Volume 50 (1983), pp. 1202-1209

[21] A. Zaoui Continuum micromechanics: a survey, J. Eng. Mech., Volume 128 (2002), pp. 808-816

[22] R. Hill A self-consistent mechanics of composite materials, J. Mech. Phys. Solids, Volume 13 (1965), pp. 213-222

[23] Z. Hashin; S. Shtrikman A variational approach to the theory of the elastic behaviour of multiphase materials, J. Mech. Phys. Solids, Volume 11 (1963), pp. 127-140

[24] T. Mori; K. Tanaka Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Mater., Volume 21 (1973), pp. 571-574

[25] Y. Benveniste A new approach to the application of Mori–Tanakaʼs theory in composite materials, Mech. Mater., Volume 6 (1987), pp. 147-157

[26] V.M. Levin Thermal expansion coefficients of heterogeneous materials, Mekh. Tverd. Tela, Volume 2 (1967), pp. 88-94

[27] B.W. Rosen; Z. Hashin Effective thermal expansion coefficients and specific heats of composite materials, Int. J. Eng. Sci., Volume 8 (1970), pp. 157-173

[28] L.R.G. Treloar The Physics of Rubber Elasticity, Oxford University Press, 1980

Cited by Sources:

Comments - Policy