Comptes Rendus
Incremental homogenization approach for ageing viscoelastic polycrystals
Comptes Rendus. Mécanique, Volume 340 (2012) no. 4-5, pp. 378-386.

An approximate self-consistent modelling is proposed to estimate the effective viscoelastic response of polycrystals presenting an ageing constitutive behaviour. This approach makes use of the equivalence between the Dirichlet series approximation of the viscoelastic functions and an internal variables formulation. An illustrative application is performed for model 2d polycrystals for which the exact expression of the continuous effective relaxation spectrum is given.

Published online:
DOI: 10.1016/j.crme.2012.02.021
Keywords: Viscoelasticity, Polycrystal, Ageing

Renaud Masson 1; Renald Brenner 2; Olivier Castelnau 3

1 CEA, DEN, Fuel Studies Department, Cadarache, 13108 Saint-Paul-lez-Durance, France
2 Laboratoire des sciences des procédés et des matériaux, CNRS, université Paris nord, 99, avenue Jean-Baptiste-Clément, 93430 Villetaneuse, France
3 Laboratoire procédés et ingénierie en mécanique et matériaux, CNRS, Arts & Métiers ParisTech, 151, boulevard de lʼhôpital, 75013 Paris, France
@article{CRMECA_2012__340_4-5_378_0,
     author = {Renaud Masson and Renald Brenner and Olivier Castelnau},
     title = {Incremental homogenization approach for ageing viscoelastic polycrystals},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {378--386},
     publisher = {Elsevier},
     volume = {340},
     number = {4-5},
     year = {2012},
     doi = {10.1016/j.crme.2012.02.021},
     language = {en},
}
TY  - JOUR
AU  - Renaud Masson
AU  - Renald Brenner
AU  - Olivier Castelnau
TI  - Incremental homogenization approach for ageing viscoelastic polycrystals
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 378
EP  - 386
VL  - 340
IS  - 4-5
PB  - Elsevier
DO  - 10.1016/j.crme.2012.02.021
LA  - en
ID  - CRMECA_2012__340_4-5_378_0
ER  - 
%0 Journal Article
%A Renaud Masson
%A Renald Brenner
%A Olivier Castelnau
%T Incremental homogenization approach for ageing viscoelastic polycrystals
%J Comptes Rendus. Mécanique
%D 2012
%P 378-386
%V 340
%N 4-5
%I Elsevier
%R 10.1016/j.crme.2012.02.021
%G en
%F CRMECA_2012__340_4-5_378_0
Renaud Masson; Renald Brenner; Olivier Castelnau. Incremental homogenization approach for ageing viscoelastic polycrystals. Comptes Rendus. Mécanique, Volume 340 (2012) no. 4-5, pp. 378-386. doi : 10.1016/j.crme.2012.02.021. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.02.021/

[1] P. Suquet Elements of homogenization for inelastic solid mechanics (E. Sanchez-Palencia; A. Zaoui, eds.), Homogenization Techniques for Composite Media, Springer-Verlag, 1987, pp. 194-278

[2] A. Zaoui, J.L. Raphanel, On the nature of the intergranular accommodation in the modeling of elastoviscoplastic behavior of polycrystalline aggregates, in: Teodosiu, Raphanel, Sidoroff (Eds.), Mecamatʼ91, Rotterdam, 1993, pp. 185–192.

[3] H. Sabar; M. Berveiller; V. Favier; S. Berbenni A new class of micro–macro models for elastic–viscoplastic heterogeneous materials, Internat. J. Solids Structures, Volume 39 (2002), pp. 3257-3276

[4] N. Lahellec; P. Suquet Effective behavior of linear viscoelastic composites: A time-integration approach, Internat. J. Solids Structures, Volume 44 (2007), pp. 507-529

[5] J. Mandel Mécanique des milieux continus, Gauthier-Villars, Paris, France, 1966

[6] Z. Hashin Complex moduli of viscoelastic composites. I. General theory and application to particulate composites, Internat. J. Solids Structures, Volume 6 (1970), pp. 539-552

[7] N. Laws; R. McLaughlin Self-consistent estimates for the viscoelastic creep compliances of composite materials, Proc. R. Soc. Lond. Ser. A, Volume 359 (1978), pp. 251-273

[8] Y. Rougier; C. Stolz; A. Zaoui Self-consistent modelling of elastic–viscoplastic polycrystals, C. R. Acad. Sci. Paris Ser. IIb, Volume 318 (1994), pp. 145-151

[9] R. Masson; A. Zaoui Self-consistent estimates for the rate-dependent elastoplastic behaviour of polycrystalline materials, J. Mech. Phys. Solids, Volume 47 (1999), pp. 1543-1568

[10] J. Mandel Mechanics of Visco-Elastic Media and Bodies, Springer, Berlin, 1974 (Ch. Un principe de correspondance pour les corps viscoélastiques linéaires vieillissants, pp. 44–55)

[11] J.-M. Ricaud; R. Masson Effective properties of linear viscoelastic heterogeneous media: Internal variables formulation and extension to ageing behaviours, Internat. J. Solids Structures, Volume 46 (2009), pp. 1599-1606

[12] Q.H. Vu; R. Brenner; O. Castelnau; H. Moulinec; P. Suquet A self-consistent estimate for linear viscoelastic polycrystals with internal variables inferred from the collocation method, Model. Simul. Mater. Sci. Engin., Volume 20 (2012), p. 024003

[13] R.A. Lebensohn; Y. Liu; P. Ponte Castañeda On the accuracy of the self-consistent approximation for polycrystals: comparison with full-field numerical simulations, Acta Materialia, Volume 52 (2004), pp. 5347-5361

[14] R. Brenner; R.A. Lebensohn; O. Castelnau Elastic anisotropy and yield surface estimates of polycrystals, Internat. J. Solids Structures, Volume 46 (2009), pp. 3018-3026

[15] Y. Rougier; C. Stolz; A. Zaoui Représentation spectrale en viscoélasticité linéaire des matériaux hétérogènes, C. R. Acad. Sci. Paris Ser. II, Volume 316 (1993), pp. 1517-1522

[16] S. Beurthey; A. Zaoui Structural morphology and relaxation spectra of viscoelastic heterogeneous materials, Eur. J. Mech. A Solids, Volume 19 (2000), pp. 1-16

[17] P.A. Turner; C.N. Tomé; C. Woo Self-consistent modelling of nonlinear visco-elastic polycrystals: an approximate scheme, Phil. Mag. A, Volume 70 (1994) no. 4, pp. 689-711

[18] R. Brenner; R. Masson; O. Castelnau; A. Zaoui A “quasi-elastic” affine formulation for the homogenized behaviour of nonlinear viscoelastic polycrystals and composites, Eur. J. Mech. A Solids, Volume 21 (2002), pp. 943-960

[19] R.A. Schapery, Approximate methods of transform inversion for viscoelastic stress analysis, in: Proc. U.S. Nat. Congr. Appl. Mech. ASME 4th, vol. 2, 1962, pp. 1075–1085.

[20] P. Suquet Four exact relations for the effective relaxation function of linear viscoelastic composites, C. R. Mecanique (2012) | DOI

[21] P. Ponte Castañeda; M.V. Nebozhyn Variational estimates of the self-consistent type for the effective behaviour of some model nonlinear polycrystals, Proc. R. Soc. Lond. Ser. A, Volume 453 (1997), pp. 2715-2724

[22] A.M. Dykhne Conductivity of a two-dimensional two-phase system, Soviet Phys. JETP, Volume 32 (1970), pp. 63-65

[23] D. Papin Cours de calcul opérationnel, Albin Michel, 1960

[24] A.F. Nikiforov; V.B. Uvarov Special Functions of Mathematical Physics, Birkhäuser, Basel, 1988

Cited by Sources:

Comments - Policy