Comptes Rendus
A phenomenological model for microstructural evolution during plastic flow
Comptes Rendus. Mécanique, Volume 340 (2012) no. 4-5, pp. 369-377.

A class of materials is considered that possesses local orthotropic symmetries. Constitutive models with microstructural evolution are developed within a conventional elastic–plastic multiplicative decomposition. In the current configuration, the orthotropic vectors evolve with the microstructural spin, which is the difference between the material and plastic spins. Representations for tensor-valued functions for orthotropic material behavior due to Zheng (1994) are extended to develop constitutive equations for the plastic parts of the rate of stretching and the spin. A key relation is established between components of the plastic part of the rate of stretching and the plastic spin. Comparisons with experiments are promising.

Publié le :
DOI : 10.1016/j.crme.2012.02.019
Mots clés : Orthotropic plastic flow, Plastic spin, Microstructural evolution
John L. Bassani 1 ; Haizhen Pan 2

1 Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
2 Holtec International, Marlton, NJ 08053, USA
@article{CRMECA_2012__340_4-5_369_0,
     author = {John L. Bassani and Haizhen Pan},
     title = {A phenomenological model for microstructural evolution during plastic flow},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {369--377},
     publisher = {Elsevier},
     volume = {340},
     number = {4-5},
     year = {2012},
     doi = {10.1016/j.crme.2012.02.019},
     language = {en},
}
TY  - JOUR
AU  - John L. Bassani
AU  - Haizhen Pan
TI  - A phenomenological model for microstructural evolution during plastic flow
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 369
EP  - 377
VL  - 340
IS  - 4-5
PB  - Elsevier
DO  - 10.1016/j.crme.2012.02.019
LA  - en
ID  - CRMECA_2012__340_4-5_369_0
ER  - 
%0 Journal Article
%A John L. Bassani
%A Haizhen Pan
%T A phenomenological model for microstructural evolution during plastic flow
%J Comptes Rendus. Mécanique
%D 2012
%P 369-377
%V 340
%N 4-5
%I Elsevier
%R 10.1016/j.crme.2012.02.019
%G en
%F CRMECA_2012__340_4-5_369_0
John L. Bassani; Haizhen Pan. A phenomenological model for microstructural evolution during plastic flow. Comptes Rendus. Mécanique, Volume 340 (2012) no. 4-5, pp. 369-377. doi : 10.1016/j.crme.2012.02.019. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.02.019/

[1] Y.F. Dafalias Corotational rates for kinematic hardening at large plastic deformations, ASME J. Appl. Mech., Volume 50 (1983), pp. 561-565

[2] Y.F. Dafalias The plastic spin concept and a simple illustration of its role in finite plastic transformations, Mech. Mater., Volume 3 (1984), pp. 223-233

[3] Y.F. Dafalias The plastic spin, ASME J. Appl. Mech., Volume 52 (1985), pp. 865-871

[4] S. Nemat-Nasser Plasticity: A Treatise on Finite Deformation of Heterogeneous Inelastic Materials, Cambridge University Press, 2004

[5] R.J. Asaro; V.A. Lubarda Mechanics of Solids and Materials, Cambridge University Press, 2006

[6] M. Berveiller; A. Zaoui An extension of the self-consistent scheme to plastically flowing polycrystals, J. Mech. Phys. Solids, Volume 26 (1979), pp. 325-344

[7] R. Masson; A. Zaoui Self-consistent estimates for the rate-dependent elastoplastic behaviour of polycrystalline materials, J. Mech. Phys. Solids, Volume 47 (1999), pp. 1543-1568

[8] M. Bornert; R. Masson; P. Ponte Castaneda; A. Zaoui Second-order estimates for the effective behaviour of viscoplastic polycrystalline materials, J. Mech. Phys. Solids, Volume 49 (2001), pp. 2737-2764

[9] J. Mandel, Plasticité classique et viscoplasticité, Courses and Lectures no. 97, Int. Center for Mech., Springer, Udine, 1971.

[10] J. Mandel Equations constitutive et directeurs dans les milieu plastiques et viscoplastiques, Int. J. Solids Struct., Volume 9 (1973), pp. 725-740

[11] J. Kratochvil On a finite strain theory of elastic–inelastic materials, Acta Mech., Volume 16 (1973), pp. 127-142

[12] B. Halphen Sur le champ des vitesses en thermoplasticité finie, Int. J. Solids Struct., Volume 11 (1975), pp. 947-960

[13] B. Loret On the effects of plastic rotation in the finite deformation of anisotropic elastoplastic materials, Mech. Mater., Volume 2 (1983), pp. 287-304

[14] E. Van Der Giessen Continuum models of large deformation plasticity. Part I: Large deformation plasticity and the concept of a natural reference state, Eur. J. Mech. A Solids, Volume 8 (1989), pp. 15-34

[15] E. Van Der Giessen Micromechanical and thermodynamic aspects of the plastic spin, Int. J. Plast., Volume 7 (1991), pp. 365-386

[16] Q.S. Zheng Theory of representations for tensor functions – A unified approach to constitutive equations, Appl. Mech. Rev., Volume 47 (1994), pp. 546-587

[17] J.P. Boehler Applications of Tensor Functions in Solid Mechanics, vol. 292, CISM International Centre for Mechanical Sciences, Springer-Verlag, 1987

[18] A.C. Eringen Mechanics of Continua, Robert E. Krieger Publishing Company, 1980 (Appendix B, pp. 530–536)

[19] R.J. Asaro; J.R. Rice Strain localization in ductile single crystals, J. Mech. Phys. Solids, Volume 25 (1971), pp. 309-338

[20] P. Tugcu; K.W. Neale On the implementation of anisotropic yield functions into finite strain problems of sheet metal forming, Int. J. Plast., Volume 15 (1999), pp. 1021-1040

[21] Y.F. Dafalias Orientational evolution of plastic orthotropy in sheet metals, J. Mech. Phys. Solids, Volume 48 (2000), pp. 2231-2255

[22] R. Hill The Mathematical Theory of Plasticity, XII. Plastic Anisotropy, Oxford University Press, Oxford, 1950 (pp. 317–334)

[23] R.S. Rivlin; J.L. Ericksen Stress–deformation relations for isotropic materials, J. Rat. Mech. Anal., Volume 4 (1955), pp. 323-425

[24] G.F. Smith On a fundamental error in two papers of C.C. Wang, Arch. Rational Mech. Anal., Volume 36 (1970), pp. 161-165

[25] G.F. Smith On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors, Int. J. Eng. Sci., Volume 9 (1971), pp. 899-916

[26] C.C. Wang On the representation for isotropic functions. Part I. Isotropic functions of symmetric tensors and vectors, Arch. Rational Mech. Anal., Volume 33 (1969), pp. 249-267

[27] C.C. Wang On the representation for isotropic functions. Part II. Isotropic functions of skew-symmetric tensors, symmetric tensors and vectors, Arch. Rational Mech. Anal., Volume 33 (1969), pp. 268-287

[28] H. Pan, J.L. Bassani, Microstructural evolution for orthotropic plastic flow, 2011, in preparation.

[29] J.P. Boehler; S. Koss Evolution of anisotropy in sheet-steel submitted to off-axes large deformation, Advances in Continuum Mechanics, Springer, Heidelberg, 1991

[30] G. Losilla; J.P. Boehler; Q.S. Zheng A generally anisotropic hardening model for big offset-strain yield stresses, Acta Mech., Volume 144 (2000), pp. 169-183

[31] E.V. Nesterova; B. Bacroix; C. Teodosiu Microstructure and texture evolution under strain-path changes in low-carbon interstitial-free steel, Metall. Mater. Trans. A, Volume 32 (2001) no. 10, pp. 2527-2538

[32] B. Bacroix; Z. Hu Texture evolution induced by strain path changes in low carbon steel sheets, Metall. Mater. Trans. A, Volume 26 (1995), pp. 601-613

[33] K.H. Kim; J.J. Yin Evolution of anisotropy under plane stress, Int. J. Mech. Phys. Solids, Volume 45 (1997), pp. 841-851

[34] H.J. Bunge; I. Nielsen Experimental determination of plastic spin in polycrystalline materials, Int. J. Plast., Volume 13 (1997), pp. 435-446

[35] R. Hill Theoretical plasticity of textured aggregated, Math. Proc. Cambridge Philos. Soc., Volume 85 (1979), pp. 179-191

[36] R. Hill Constitutive modeling of orthotropic plasticity in sheet metals, J. Mech. Phys. Solids, Volume 38 (1990), pp. 405-417

[37] J.L. Bassani Yield characterization of metals with transversely isotropic plastic properties, Int. J. Mech. Sci., Volume 19 (1977), pp. 651-660

[38] F. Barlat; J. Lian Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions, Int. J. Plast., Volume 5 (1989), pp. 51-66

[39] G. Ferron; R. Makkouk; J. Morreale A parametric description of orthotropic plasticity in metal sheets, Int. J. Plast., Volume 10 (1994), pp. 431-449

[40] J.F. Mulhern; T.G. Rogers; A.J.M. Spencer A continuum model for fiber-reinforced plastic materials, Proc. R. Soc. Lond. A, Volume 301 (1967), pp. 473-492

[41] N. Aravas Finite elastoplastic transformations of transversely isotropic metals, Int. J. Solids Struct., Volume 29 (1992), pp. 2137-2157

[42] E.M. Arruda; M.C. Boyce Evolution of plastic anisotropy in amorphous polymers during finite straining, Int. J. Plast., Volume 9 (1993), pp. 697-720

[43] S.D. Batterman; J.L. Bassani Yielding, anisotropy and deformation processing of polymers, Polymer Eng. Sci., Volume 30 (1990), pp. 1281-1287

[44] J. Pereda; N. Aravas; J.L. Bassani Finite deformation of anisotropic polymers, Mech. Mater., Volume 15 (1993), pp. 3-20

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

An approximate yield criterion for anisotropic porous media

Shyam M. Keralavarma; A. Amine Benzerga

C. R. Méca (2008)


A 2D micromechanical modelling of anisotropy in granular media

Olivier Millet; Shuitao Gu; Djimédo Kondo

C. R. Méca (2007)