The purpose of this Note is to give a result of effective stability for perturbations of integrable Hamiltonian systems, which we believe is more suitable for applications to concrete Hamiltonian systems.
Le but de cette Note est de donner un résultat de stabilité effective pour les perturbations de systèmes hamiltoniens intégrables, que nous pensons être plus adapté à des systèmes hamiltoniens concrets.
Accepted:
Published online:
Mots-clés : Systèmes dynamiques, Systèmes hamiltoniens, Stabilité effective
Abed Bounemoura 1
@article{CRMECA_2012__340_6_401_0, author = {Abed Bounemoura}, title = {A more applicable notion of effective stability for {Hamiltonian} systems}, journal = {Comptes Rendus. M\'ecanique}, pages = {401--404}, publisher = {Elsevier}, volume = {340}, number = {6}, year = {2012}, doi = {10.1016/j.crme.2012.02.024}, language = {en}, }
Abed Bounemoura. A more applicable notion of effective stability for Hamiltonian systems. Comptes Rendus. Mécanique, Volume 340 (2012) no. 6, pp. 401-404. doi : 10.1016/j.crme.2012.02.024. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.02.024/
[1] On the preservation of conditionally periodic motions for a small change in Hamiltonʼs function, Dokl. Akad. Nauk SSSR, Volume 98 (1954), pp. 527-530
[2] An exponential estimate of the time of stability of nearly integrable Hamiltonian systems, Russian Math. Surveys, Volume 32 (1977) no. 6, pp. 1-65
[3] Stability over exponentially long times in the planetary problem, Nonlinearity, Volume 9 (1996) no. 6, pp. 1703-1751
[4] Improved exponential stability for near-integrable Hamiltonian systems, Nonlinearity, Volume 24 (2011) no. 1, pp. 97-112
[5] Nekhoroshev estimates for quasi-convex Hamiltonian systems, Math. Z., Volume 213 (1993), pp. 187-216
[6] A. Bounemoura, J.-P. Marco, L. Niederman, Stability estimates for the planetary problem, in preparation.
Cited by Sources:
Comments - Policy