Explicit numerical schemes obtained using variable space grid (VSGM) and boundary immobilization (BIM) methods are considered for the solution of the transient heat conduction problem with phase change. This article briefly reviews different approaches developed to track the phase change front with a particular interest to those tracking explicitly the moving boundary. The analysis shows that both methods lead to identical computational algorithm, then considers the modified numerical scheme developed by Kutluay et al. (J. Comput. Appl. Math. 81 (1997) 135–144) and proposes a refinement procedure for the scheme without any additional CPU time. Two Stefan-like problems, having exact solutions, are studied and numerical results are assessed with respect to their performances.
Les schémas numériques obtenus à partir des méthodes fixant la frontière mobile (BIM) ou adaptant le pas de discrétisation spatiale au mouvement de celle-ci (VSGM) sont appliqués au problème de conduction instationnaire avec changement de phase. Lʼarticle revoit brièvement les différentes approches développées pour le suivi dʼinterface avec une attention particulière pour celles la localisant explicitement. Lʼanalyse, qui montre que les deux schémas ne sont que deux expressions différentes dʼune même solution, porte également sur la modification apportée par Kutluay et al. (J. Comput. Appl. Math. 81 (1997) 135–144) et propose une procédure sure pour améliorer la précision de la solution. Lʼapplication de ces schémas numériques à deux exemples de problème de Stefan permet de comparer leurs performances.
Mots-clés : Problème de Stefan, Solution numérique, Différences finies, Maillage spatial variable, Immobilisation de frontière, Amélioration de la précision
Nacer Sadoun 1, 2; El-Khider Si-Ahmed 1, 3; Pierre Colinet 2; Jack Legrand 3
@article{CRMECA_2012__340_7_501_0, author = {Nacer Sadoun and El-Khider Si-Ahmed and Pierre Colinet and Jack Legrand}, title = {On the boundary immobilization and variable space grid methods for transient heat conduction problems with phase change: {Discussion} and refinement}, journal = {Comptes Rendus. M\'ecanique}, pages = {501--511}, publisher = {Elsevier}, volume = {340}, number = {7}, year = {2012}, doi = {10.1016/j.crme.2012.03.003}, language = {en}, }
TY - JOUR AU - Nacer Sadoun AU - El-Khider Si-Ahmed AU - Pierre Colinet AU - Jack Legrand TI - On the boundary immobilization and variable space grid methods for transient heat conduction problems with phase change: Discussion and refinement JO - Comptes Rendus. Mécanique PY - 2012 SP - 501 EP - 511 VL - 340 IS - 7 PB - Elsevier DO - 10.1016/j.crme.2012.03.003 LA - en ID - CRMECA_2012__340_7_501_0 ER -
%0 Journal Article %A Nacer Sadoun %A El-Khider Si-Ahmed %A Pierre Colinet %A Jack Legrand %T On the boundary immobilization and variable space grid methods for transient heat conduction problems with phase change: Discussion and refinement %J Comptes Rendus. Mécanique %D 2012 %P 501-511 %V 340 %N 7 %I Elsevier %R 10.1016/j.crme.2012.03.003 %G en %F CRMECA_2012__340_7_501_0
Nacer Sadoun; El-Khider Si-Ahmed; Pierre Colinet; Jack Legrand. On the boundary immobilization and variable space grid methods for transient heat conduction problems with phase change: Discussion and refinement. Comptes Rendus. Mécanique, Analytical and innovative solutions for heat transfer problems involving phase change and interfaces, Volume 340 (2012) no. 7, pp. 501-511. doi : 10.1016/j.crme.2012.03.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.03.003/
[1] Conduction of Heat in Solids, Oxford University Press, 1959
[2] Some exact solutions to Stefan problems with fractional differential equations, J. Math. Anal. Appl., Volume 351 (2009), pp. 536-542
[3] An exact solution of a limit case Stefan problem governed by a fractional diffusion equation, Int. J. Heat Mass Transfer, Volume 53 (2010), pp. 5622-5625
[4] R.S. Gupta, Some numerical and integral methods for solving moving boundary problems in heat flow and diffusion, Ph.D. thesis, Brunel University, Uxbridge, 1972.
[5] Free and Moving Boundary Problems, Clarendon Press, Oxford, 1984
[6] One-Dimensional Stefan Problems: An Introduction, Longman Scientific and Technical, New York, USA, 1987
[7] Mathematical Modelling of Melting and Freezing Processes, Hemisphere Publishing Corporation, USA, 1993
[8] Melting and freezing, Adv. Heat Transfer, Volume 19 (1989), pp. 1-95
[9] A comparative study of numerical methods for moving boundary problems, J. Inst. Math. Appl., Volume 5 (1980), pp. 411-429
[10] An homogenization method for solid–liquid phase change during directional solidification (R.A. Nelson; T. Chopin; S.T. Thynell, eds.), Numerical and Experimental Methods in Heat Transfer, vol. 361, ASME, H.T.D., 1998, pp. 453-469
[11] Computational model for solutal convection during directional solidification, Numer. Heat Transfer Part B, Volume 41 (2001), pp. 325-338
[12] Lattice Boltzmann method for melting/solidification problems, C. R. Mecanique, Volume 335 (2007), pp. 295-303
[13] Solidification in finite slab with convective cooling and shrinkage, Appl. Math. Model., Volume 27 (2003), pp. 733-762
[14] On the perturbation method for the Stefan problem with time-dependent boundary conditions, Int. J. Heat Mass Transfer, Volume 46 (2003), pp. 1497-1501
[15] The heat-balance integral and its application to problems involving a change of phase, Trans. ASME, Volume 80 (1958), pp. 335-345
[16] On the Goodman heat balance integral method for Stefan-like problems: Further considerations and refinements, Thermal Sci., Volume 13 (2009) no. 2, pp. 81-96
[17] Analysis of phase-change in finite slabs subjected to convective boundary conditions: Part I – Melting, Int. Rev. Chem. Eng., Volume 1 (2009), pp. 87-99
[18] Analysis of phase-change in finite slabs subjected to convective boundary conditions: Part II – Freezing, Int. Rev. Chem. Eng., Volume 1 (2009), pp. 100-108
[19] A new analytical expression of the freezing constant in the Stefan problem with initial superheat, Numer. Meth. Therm. Probl., Volume 9 (1995), pp. 843-854
[20] On the refined integral method for the one-phase Stefan problem with time-dependent boundary conditions, Appl. Math. Model., Volume 30 (2006), pp. 531-544
[21] Optimal exponent heat balance and refined integral methods applied to Stefan problems, Int. J. Heat Mass Transfer, Volume 53 (2010), pp. 1119-2010
[22] N. Sadoun, E.K. Si-Ahmed, P. Colinet, New analytical expression for the freezing constant using the refined integral method with cubic approximant, in: MULTIFLOW Conference 2010, Brussels, November 8–10, 2010.
[23] An integral method for non-linear moving boundary problems, Chem. Eng. Sci., Volume 47 (1992), pp. 475-479
[24] On integral iterative formulation in classical Stefan problem, Chem. Eng. Sci., Volume 47 (1992), pp. 3158-3162
[25] Heat balance integral to fractional (half-time) heat diffusion sub-model, Thermal Sci., Volume 14 (2010), pp. 291-316
[26] Multiple similarity for solidification and melting, J. Cryst. Growth, Volume 191 (1998), pp. 573-585
[27] Testing the computer assisted solution of the electrical analogy in a heat transfer process with a phase change which has an analytical solution, Int. J. Refrig., Volume 24 (2001), pp. 532-537
[28] Accurate solutions of moving boundary problems using the enthalpy method, Int. J. Heat Mass Transfer, Volume 24 (1981), pp. 545-556
[29] Fixed grid techniques for phase-change problems: A review, Int. J. Numer. Eng., Volume 30 (1990), pp. 857-898
[30] Numerical simulation of convection/diffusion phase change problems: A review, Int. J. Heat Mass Transfer, Volume 36 (1993), pp. 4095-4106
[31] Two methods for the solution of moving boundary problems in diffusion and heat flow, Quart. J. Mech. Appl. Math., Volume 10 (1957), pp. 202-231
[32] Numerical and machine solutions of the transient heat conduction problems involving melting or freezing, J. Heat Transfer (C), Volume 81 (1959), pp. 106-112
[33] An alternative fixed grid method for solution of the classical one-phase change Stefan problem, Appl. Math. Comput., Volume 158 (2004), pp. 573-584
[34] On the numerical integration of a parabolic differential equation subject to a moving boundary condition, AFS Cast Metals Res., Volume 10 (1974), pp. 26-29
[35] Inward solidification with a convective boundary condition, ASME J. Heat Transfer, Volume 96 (1974), pp. 114-115
[36] A modified variable time-step method for the one-dimensional Stefan problem, Comput. Meth. Appl. Mech. Eng., Volume 23 (1980), pp. 101-108
[37] On heat conduction with phase change: accurate explicit numerical method, J. Appl. Fluid Mech., Volume 5 (2012), pp. 105-112
[38] The numerical solution of one-phase classical Stefan problem, J. Comput. Appl. Math., Volume 81 (1997), pp. 135-144
[39] Finite difference solution of one-dimensional Stefan problem with periodic boundary conditions, Int. J. Heat Mass Transfer, Volume 46 (2003) no. 15, pp. 2911-2916
[40] Numerical schemes for one-dimensional Stefan-like problems with a forcing term, Appl. Math. Comput., Volume 168 (2005), pp. 1159-1168
[41] Numerical solution of Stefan problem with time-dependent boundary conditions by variable space grid method, Thermal Sci., Volume 13 (2009) no. 4, pp. 165-174
[42] One-dimensional solidification of pure materials with a time periodically oscillating temperature boundary condition, Appl. Math. Comput., Volume 217 (2011), pp. 6541-6555
[43] R.C. Dix, J. Cizek, The isotherm migration method for transient heat conduction analysis, in: Proc. Fourth Int. Heat Trans. Conf., vol. 1, Paris, 1970.
[44] Solution of non-linear heat conduction problems in media with phase changes, Int. Chem. Eng., Volume 10 (1970), pp. 42-48
[45] Numerical solution of free boundary problem by interchanging dependent and independent variables, J. Inst. Math. Appl., Volume 26 (1980), pp. 77-85
[46] A note on the use of isotherm migration method, J. Comput. Appl. Math., Volume 36 (1991), pp. 133-147
[47] An isotherm migration formulation for one-phase Stefan problem with a time dependent Neumann condition, Appl. Math. Comput., Volume 150 (2004), pp. 59-67
[48] Free boundary problems for nonlinear parabolic equations with nonlinear free boundary conditions, J. Math. Anal. Appl., Volume 72 (1979), pp. 247-273
[49] K.H. Hoffmann (Ed.), Freie Randwert probleme I, II, III, Preprint Nos. 22, 28, 34, Fachbereich Mathematik, Freie Univ. Berlin, Berlin, 1977.
[50] A new look at the heat balance integral method, Appl. Math. Model., Volume 25 (2001) no. 10, pp. 815-824
[51] Conduction of heat in solid, Quart. J. Mech. Appl. Math., Volume 8 (1950), pp. 81-94
Cited by Sources:
Comments - Policy