Comptes Rendus
On the boundary immobilization and variable space grid methods for transient heat conduction problems with phase change: Discussion and refinement
[Méthodes dʼimmobilisation de lʼinterface et du pas dʼespace variable appliquées au problème de conduction instationnaire de la chaleur avec changement de phase : Discussion et amélioration]
Comptes Rendus. Mécanique, Volume 340 (2012) no. 7, pp. 501-511.

Les schémas numériques obtenus à partir des méthodes fixant la frontière mobile (BIM) ou adaptant le pas de discrétisation spatiale au mouvement de celle-ci (VSGM) sont appliqués au problème de conduction instationnaire avec changement de phase. Lʼarticle revoit brièvement les différentes approches développées pour le suivi dʼinterface avec une attention particulière pour celles la localisant explicitement. Lʼanalyse, qui montre que les deux schémas ne sont que deux expressions différentes dʼune même solution, porte également sur la modification apportée par Kutluay et al. (J. Comput. Appl. Math. 81 (1997) 135–144) et propose une procédure sure pour améliorer la précision de la solution. Lʼapplication de ces schémas numériques à deux exemples de problème de Stefan permet de comparer leurs performances.

Explicit numerical schemes obtained using variable space grid (VSGM) and boundary immobilization (BIM) methods are considered for the solution of the transient heat conduction problem with phase change. This article briefly reviews different approaches developed to track the phase change front with a particular interest to those tracking explicitly the moving boundary. The analysis shows that both methods lead to identical computational algorithm, then considers the modified numerical scheme developed by Kutluay et al. (J. Comput. Appl. Math. 81 (1997) 135–144) and proposes a refinement procedure for the scheme without any additional CPU time. Two Stefan-like problems, having exact solutions, are studied and numerical results are assessed with respect to their performances.

Publié le :
DOI : 10.1016/j.crme.2012.03.003
Keywords: Stefan problem, Numerical solution, Finite differences, Variable space grid, Boundary immobilization, Accuracy refinement
Mot clés : Problème de Stefan, Solution numérique, Différences finies, Maillage spatial variable, Immobilisation de frontière, Amélioration de la précision
Nacer Sadoun 1, 2 ; El-Khider Si-Ahmed 1, 3 ; Pierre Colinet 2 ; Jack Legrand 3

1 Laboratoire de mécanique des fluides théorique et appliquée, faculté de physique, université des sciences et de la technologie Houari Boumediene (USTHB), BP 32, El-Alia, 16111 Alger, Algeria
2 Service transferts, interfaces et procédés (TIPs), faculté des sciences appliquées/École polytechnique, université libre de Bruxelles (ULB), CP165/67, 50, avenue F.D. Roosevelt, B-1050 Bruxelles, Belgium
3 LUNAM université, université de Nantes, CNRS, GEPEA UMR-6144, BP 406, 37, boulevard de lʼUniversité, 44602 Saint-Nazaire cedex, France
@article{CRMECA_2012__340_7_501_0,
     author = {Nacer Sadoun and El-Khider Si-Ahmed and Pierre Colinet and Jack Legrand},
     title = {On the boundary immobilization and variable space grid methods for transient heat conduction problems with phase change: {Discussion} and refinement},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {501--511},
     publisher = {Elsevier},
     volume = {340},
     number = {7},
     year = {2012},
     doi = {10.1016/j.crme.2012.03.003},
     language = {en},
}
TY  - JOUR
AU  - Nacer Sadoun
AU  - El-Khider Si-Ahmed
AU  - Pierre Colinet
AU  - Jack Legrand
TI  - On the boundary immobilization and variable space grid methods for transient heat conduction problems with phase change: Discussion and refinement
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 501
EP  - 511
VL  - 340
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crme.2012.03.003
LA  - en
ID  - CRMECA_2012__340_7_501_0
ER  - 
%0 Journal Article
%A Nacer Sadoun
%A El-Khider Si-Ahmed
%A Pierre Colinet
%A Jack Legrand
%T On the boundary immobilization and variable space grid methods for transient heat conduction problems with phase change: Discussion and refinement
%J Comptes Rendus. Mécanique
%D 2012
%P 501-511
%V 340
%N 7
%I Elsevier
%R 10.1016/j.crme.2012.03.003
%G en
%F CRMECA_2012__340_7_501_0
Nacer Sadoun; El-Khider Si-Ahmed; Pierre Colinet; Jack Legrand. On the boundary immobilization and variable space grid methods for transient heat conduction problems with phase change: Discussion and refinement. Comptes Rendus. Mécanique, Volume 340 (2012) no. 7, pp. 501-511. doi : 10.1016/j.crme.2012.03.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.03.003/

[1] H.S. Carslaw; J.C. Jaeger Conduction of Heat in Solids, Oxford University Press, 1959

[2] L. Junyi; X. Mingyu Some exact solutions to Stefan problems with fractional differential equations, J. Math. Anal. Appl., Volume 351 (2009), pp. 536-542

[3] V. Voller An exact solution of a limit case Stefan problem governed by a fractional diffusion equation, Int. J. Heat Mass Transfer, Volume 53 (2010), pp. 5622-5625

[4] R.S. Gupta, Some numerical and integral methods for solving moving boundary problems in heat flow and diffusion, Ph.D. thesis, Brunel University, Uxbridge, 1972.

[5] J. Crank Free and Moving Boundary Problems, Clarendon Press, Oxford, 1984

[6] J.M. Hill One-Dimensional Stefan Problems: An Introduction, Longman Scientific and Technical, New York, USA, 1987

[7] V. Alexiades; A.D. Solomon Mathematical Modelling of Melting and Freezing Processes, Hemisphere Publishing Corporation, USA, 1993

[8] L.S. Yao; J. Prusa Melting and freezing, Adv. Heat Transfer, Volume 19 (1989), pp. 1-95

[9] R.M. Furzeland A comparative study of numerical methods for moving boundary problems, J. Inst. Math. Appl., Volume 5 (1980), pp. 411-429

[10] M. El Ganaoui; P. Bontoux An homogenization method for solid–liquid phase change during directional solidification (R.A. Nelson; T. Chopin; S.T. Thynell, eds.), Numerical and Experimental Methods in Heat Transfer, vol. 361, ASME, H.T.D., 1998, pp. 453-469

[11] M. El Ganaoui; P. Bontoux; A. Lamazouade; E. Leonardi; G. De Vahl Davis Computational model for solutal convection during directional solidification, Numer. Heat Transfer Part B, Volume 41 (2001), pp. 325-338

[12] E.A. Semma; M. El Ganaoui; R. Bennacer Lattice Boltzmann method for melting/solidification problems, C. R. Mecanique, Volume 335 (2007), pp. 295-303

[13] Z. Yang; M. Sen; S. Paolucci Solidification in finite slab with convective cooling and shrinkage, Appl. Math. Model., Volume 27 (2003), pp. 733-762

[14] J. Caldwell; Y.Y. Kwan On the perturbation method for the Stefan problem with time-dependent boundary conditions, Int. J. Heat Mass Transfer, Volume 46 (2003), pp. 1497-1501

[15] T.R. Goodman The heat-balance integral and its application to problems involving a change of phase, Trans. ASME, Volume 80 (1958), pp. 335-345

[16] N. Sadoun; E.K. Si-Ahmed; P. Colinet; J. Legrand On the Goodman heat balance integral method for Stefan-like problems: Further considerations and refinements, Thermal Sci., Volume 13 (2009) no. 2, pp. 81-96

[17] A.P. Roday; M.J. Kazmierczak Analysis of phase-change in finite slabs subjected to convective boundary conditions: Part I – Melting, Int. Rev. Chem. Eng., Volume 1 (2009), pp. 87-99

[18] A.P. Roday; M.J. Kazmierczak Analysis of phase-change in finite slabs subjected to convective boundary conditions: Part II – Freezing, Int. Rev. Chem. Eng., Volume 1 (2009), pp. 100-108

[19] N. Sadoun; E.K. Si-Ahmed A new analytical expression of the freezing constant in the Stefan problem with initial superheat, Numer. Meth. Therm. Probl., Volume 9 (1995), pp. 843-854

[20] N. Sadoun; E.K. Si-Ahmed; P. Colinet On the refined integral method for the one-phase Stefan problem with time-dependent boundary conditions, Appl. Math. Model., Volume 30 (2006), pp. 531-544

[21] T.G. Myers Optimal exponent heat balance and refined integral methods applied to Stefan problems, Int. J. Heat Mass Transfer, Volume 53 (2010), pp. 1119-2010

[22] N. Sadoun, E.K. Si-Ahmed, P. Colinet, New analytical expression for the freezing constant using the refined integral method with cubic approximant, in: MULTIFLOW Conference 2010, Brussels, November 8–10, 2010.

[23] B. Sudhakar An integral method for non-linear moving boundary problems, Chem. Eng. Sci., Volume 47 (1992), pp. 475-479

[24] B. Sudhakar On integral iterative formulation in classical Stefan problem, Chem. Eng. Sci., Volume 47 (1992), pp. 3158-3162

[25] J. Hristov Heat balance integral to fractional (half-time) heat diffusion sub-model, Thermal Sci., Volume 14 (2010), pp. 291-316

[26] S.R. Coriell; G.B. McFadden; R.F. Sekerka; W.J. Boettinger Multiple similarity for solidification and melting, J. Cryst. Growth, Volume 191 (1998), pp. 573-585

[27] V.M. Barragan; J.M. Arias; M. Dominguez; C. Garcia Testing the computer assisted solution of the electrical analogy in a heat transfer process with a phase change which has an analytical solution, Int. J. Refrig., Volume 24 (2001), pp. 532-537

[28] V. Voller; M. Cross Accurate solutions of moving boundary problems using the enthalpy method, Int. J. Heat Mass Transfer, Volume 24 (1981), pp. 545-556

[29] V.R. Voller; C.R. Swaminathan; B.G. Thomas Fixed grid techniques for phase-change problems: A review, Int. J. Numer. Eng., Volume 30 (1990), pp. 857-898

[30] A.A. Samarski; P.N. Vabishchevich; O.P. Iliev; A.G. Churbano Numerical simulation of convection/diffusion phase change problems: A review, Int. J. Heat Mass Transfer, Volume 36 (1993), pp. 4095-4106

[31] J. Crank Two methods for the solution of moving boundary problems in diffusion and heat flow, Quart. J. Mech. Appl. Math., Volume 10 (1957), pp. 202-231

[32] W.D. Murray; F. Landis Numerical and machine solutions of the transient heat conduction problems involving melting or freezing, J. Heat Transfer (C), Volume 81 (1959), pp. 106-112

[33] A.K. Verma; S. Chandra; B.K. Dhindaw An alternative fixed grid method for solution of the classical one-phase change Stefan problem, Appl. Math. Comput., Volume 158 (2004), pp. 573-584

[34] J. Douglas; T.M. Callie On the numerical integration of a parabolic differential equation subject to a moving boundary condition, AFS Cast Metals Res., Volume 10 (1974), pp. 26-29

[35] J.S. Goodling; M.S. Khader Inward solidification with a convective boundary condition, ASME J. Heat Transfer, Volume 96 (1974), pp. 114-115

[36] R.S. Gupta; D. Kumar A modified variable time-step method for the one-dimensional Stefan problem, Comput. Meth. Appl. Mech. Eng., Volume 23 (1980), pp. 101-108

[37] N. Sadoun; E.K. Si-Ahmed; J. Legrand On heat conduction with phase change: accurate explicit numerical method, J. Appl. Fluid Mech., Volume 5 (2012), pp. 105-112

[38] S. Kutluay; A.R. Bahadir; A. Ozdeş The numerical solution of one-phase classical Stefan problem, J. Comput. Appl. Math., Volume 81 (1997), pp. 135-144

[39] S. Savoviç; J. Caldwell Finite difference solution of one-dimensional Stefan problem with periodic boundary conditions, Int. J. Heat Mass Transfer, Volume 46 (2003) no. 15, pp. 2911-2916

[40] S. Kutluay Numerical schemes for one-dimensional Stefan-like problems with a forcing term, Appl. Math. Comput., Volume 168 (2005), pp. 1159-1168

[41] S. Savoviç; J. Caldwell Numerical solution of Stefan problem with time-dependent boundary conditions by variable space grid method, Thermal Sci., Volume 13 (2009) no. 4, pp. 165-174

[42] F. Yigit One-dimensional solidification of pure materials with a time periodically oscillating temperature boundary condition, Appl. Math. Comput., Volume 217 (2011), pp. 6541-6555

[43] R.C. Dix, J. Cizek, The isotherm migration method for transient heat conduction analysis, in: Proc. Fourth Int. Heat Trans. Conf., vol. 1, Paris, 1970.

[44] F.L. Chernousko Solution of non-linear heat conduction problems in media with phase changes, Int. Chem. Eng., Volume 10 (1970), pp. 42-48

[45] J. Crank; T. Ozis Numerical solution of free boundary problem by interchanging dependent and independent variables, J. Inst. Math. Appl., Volume 26 (1980), pp. 77-85

[46] A.S. Wood A note on the use of isotherm migration method, J. Comput. Appl. Math., Volume 36 (1991), pp. 133-147

[47] S. Kutluay; A. Esen An isotherm migration formulation for one-phase Stefan problem with a time dependent Neumann condition, Appl. Math. Comput., Volume 150 (2004), pp. 59-67

[48] A. Fasano; M. Primicerio Free boundary problems for nonlinear parabolic equations with nonlinear free boundary conditions, J. Math. Anal. Appl., Volume 72 (1979), pp. 247-273

[49] K.H. Hoffmann (Ed.), Freie Randwert probleme I, II, III, Preprint Nos. 22, 28, 34, Fachbereich Mathematik, Freie Univ. Berlin, Berlin, 1977.

[50] A.S. Wood A new look at the heat balance integral method, Appl. Math. Model., Volume 25 (2001) no. 10, pp. 815-824

[51] H.G. Landau Conduction of heat in solid, Quart. J. Mech. Appl. Math., Volume 8 (1950), pp. 81-94

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

The heat-balance integral: 1. How to calibrate the parabolic profile?

Jordan Hristov

C. R. Méca (2012)