A finite element algorithm is proposed to simulate steady-state diffusion–convection problems with isothermal phase changes. This technique is based on an enthalpic approach discretized by means of a finite element approximation of the enthalpy including the latent heat of transformation. The interface of phase changes is implicitly described without coupling with an interface-capturing technique. An example clearly shows the efficiency of the method developed.
Un algorithme éléments finis est proposé pour simuler les problèmes de diffusion–convection avec des changements de phase isothermes. Cette technique repose sur une approche en enthalpie, discrétisée au moyen dʼune approximation éléments finis de lʼenthalpie intégrant la chaleur latente de transformation. Lʼinterface est décrite de manière implicite sans couplage avec une technique spécifique de capture dʼinterface. Un exemple met clairement en évidence lʼefficacité de la méthode développée.
Mots-clés : Convection, Éléments finis enrichis, Problème de Stefan, Changements de phase isothermes
Eric Feulvarch 1; Jean-Christophe Roux 2; Jean-Michel Bergheau 1
@article{CRMECA_2012__340_7_512_0, author = {Eric Feulvarch and Jean-Christophe Roux and Jean-Michel Bergheau}, title = {Finite element solution for diffusion{\textendash}convection problems with isothermal phase changes}, journal = {Comptes Rendus. M\'ecanique}, pages = {512--517}, publisher = {Elsevier}, volume = {340}, number = {7}, year = {2012}, doi = {10.1016/j.crme.2012.03.009}, language = {en}, }
TY - JOUR AU - Eric Feulvarch AU - Jean-Christophe Roux AU - Jean-Michel Bergheau TI - Finite element solution for diffusion–convection problems with isothermal phase changes JO - Comptes Rendus. Mécanique PY - 2012 SP - 512 EP - 517 VL - 340 IS - 7 PB - Elsevier DO - 10.1016/j.crme.2012.03.009 LA - en ID - CRMECA_2012__340_7_512_0 ER -
%0 Journal Article %A Eric Feulvarch %A Jean-Christophe Roux %A Jean-Michel Bergheau %T Finite element solution for diffusion–convection problems with isothermal phase changes %J Comptes Rendus. Mécanique %D 2012 %P 512-517 %V 340 %N 7 %I Elsevier %R 10.1016/j.crme.2012.03.009 %G en %F CRMECA_2012__340_7_512_0
Eric Feulvarch; Jean-Christophe Roux; Jean-Michel Bergheau. Finite element solution for diffusion–convection problems with isothermal phase changes. Comptes Rendus. Mécanique, Analytical and innovative solutions for heat transfer problems involving phase change and interfaces, Volume 340 (2012) no. 7, pp. 512-517. doi : 10.1016/j.crme.2012.03.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.03.009/
[1] J.-M. Bergheau, G. Mangialenti, F. Boitout, Contribution of numerical simulation to the analysis of heat treatment and surface hardening processes, in: Proc. of Heat Treatʼ98, 18th ASM Heat Treating Society Conference and Exposition, Rosemont, Illinois, USA, 12–15 October 1998.
[2] Localisation dʼun front de solidification en interaction avec un bain fondu instationnaire, C. R. Acad. Sci. Paris, Sér. IIb, Volume 327 (1999), pp. 41-48
[3] Computational solution for fluid flow under solid/liquid phase change conditions, Int. J. Comput. Fluids, Volume 31 (2002) no. 4–7, pp. 539-556
[4] A finite element method for steady-state conduction–advection phase change problems, Finite Elem. Anal. Des., Volume 19 (1995), pp. 153-168
[5] An overview of numerical methods for phase change problems, Adv. Numer. Heat Transfer, Volume 1 (1996), pp. 341-375
[6] An implicit finite element algorithm for the simulation of diffusion with phase changes in solids, Int. J. Numer. Meth. Eng., Volume 78 (2009), pp. 1492-1512
[7] Finite element solution of nonlinear heat conduction problems with special reference to phase change, Int. J. Numer. Meth. Eng., Volume 8 (1974), pp. 613-624
[8] An improved algorithm for heat conduction problems with phase change, Int. J. Numer. Meth. Eng., Volume 12 (1978), pp. 1191-1195
[9] Finite element simulation of solidification problems, Appl. Sci. Res., Volume 44 (1987), pp. 61-92
[10] An implicit fixed-grid method for the finite-element analysis of heat transfer involving phase changes, Numer. Heat Transfer, Part B: Fundamentals, Volume 51 (2007), pp. 585-610
[11] An enriched finite element algorithm for the implicit simulation of the Stefan problem, C. R. Mecanique, Volume 339 (2011), pp. 649-654
[12] Finite Element Simulation of Heat Transfer, ISTE–Wiley, 2008 (ISBN: 978-1-84821-053-0)
[13] Modeling subgrid viscosity for advection–diffusion problems, Comput. Meth. Appl. Mech. Eng., Volume 190 (2000), pp. 1601-1610
[14] Subgrid stabilization of Galerkin approximations of linear monotone operators, IMA J. Numer. Anal., Volume 21 (2001), pp. 165-197
[15] On the choice of a stabilizing subgrid for convection–diffusion problems, Comput. Meth. Appl. Mech. Eng., Volume 197 (2005), pp. 127-148
[16] Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations, Comput. Meth. Appl. Mech. Eng., Volume 32 (1982), pp. 199-259
Cited by Sources:
Comments - Policy