This article presents results of solid–liquid phase change, the Stefan Problem, where melting is driven internal heat generation, in a cylindrical geometry. The comparison between a quasi-static analytical solution for Stefan numbers less than one and numerical solutions shows good agreement. The computational results of phase change with internal heat generation show how convection cells form in the liquid region. A scale analysis of the same problem shows four distinct regions of the melting process.
John Crepeau 1; Ali S. Siahpush 2
@article{CRMECA_2012__340_7_471_0, author = {John Crepeau and Ali S. Siahpush}, title = {Solid{\textendash}liquid phase change driven by internal heat generation}, journal = {Comptes Rendus. M\'ecanique}, pages = {471--476}, publisher = {Elsevier}, volume = {340}, number = {7}, year = {2012}, doi = {10.1016/j.crme.2012.03.004}, language = {en}, }
John Crepeau; Ali S. Siahpush. Solid–liquid phase change driven by internal heat generation. Comptes Rendus. Mécanique, Analytical and innovative solutions for heat transfer problems involving phase change and interfaces, Volume 340 (2012) no. 7, pp. 471-476. doi : 10.1016/j.crme.2012.03.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.03.004/
[1] J. Stefan, Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere, Sitzungsberichte der k.k. Akademie der Wissenschaften in Wien, Mathematische–Naturwissenschaften, Abteilung II (98), 1889, pp. 965–983.
[2] The Stefan Problem, AMS Publications, Providence, RI, 1971
[3] Heat transfer during melting and solidification of metals, J. Heat Transfer, Volume 110 (1988), pp. 1205-1219
[4] Melting and freezing, Adv. Heat Transfer, Volume 19 (1989), pp. 1-95
[5] Étude numérique des instabilités de la phase fluide et de lʼinterface de solidification en croissance dirigée horizontale, C. R. Mecanique, Volume 331 (2003), pp. 631-639
[6] Simple heat conduction model with phase change for reactor fuel pin, Nuclear Sci. Eng., Volume 60 (1976), pp. 452-460
[7] An assessment of fuel freezing and drainage phenomena in a reactor shield plug following a core disruptive accident, Nuclear Eng. Design, Volume 47 (1978), pp. 195-225
[8] The effects of heat generation and wall interaction on freezing and melting in a finite slab, Int. J. Heat Mass Transfer, Volume 27 (1984), pp. 29-37
[9] Generalized phase change model for melting and solidification with internal heat generation, J. Thermophysics, Volume 1 (1987), pp. 171-174
[10] Liquid solidification in laminar tube flow with internal heat sources, Nuclear Eng. Design, Volume 75 (1982), pp. 73-80
[11] Fundamentals of Heat and Mass Transfer, Wiley, New York, 2002
[12] Conduction Heat Transfer, Prentice Hall, Englewood Cliffs, 1994
[13] Approximate solutions to the Stefan problem with internal heat generation, Heat Mass Transfer, Volume 44 (2008), pp. 787-794
[14] A fixed-grid numerical modeling methodology for convection–diffusion mushy region phase-change problems, Int. J. Heat Mass Transfer, Volume 30 (1987), pp. 1709-1720
[15] Convection in horizontal layers with internal heat generation. Experiments, J. Fluid Mechanics, Volume 30 (1967), pp. 21-31
[16] Convection in horizontal layers with internal heat generation. Theory, J. Fluid Mechanics, Volume 30 (1967), pp. 33-49
[17] On the Stefan problem with volumetric energy generation, Heat Mass Transfer, Volume 46 (2009), pp. 119-128
[18] J.C. Crepeau, A. Siahpush, Scale analysis of convective melting with internal heat generation, in: Proc. ASME/JSME 8th Thermal Engineering Joint Conference, paper #44162, Honolulu, Hawaii, 2011.
[19] Convection Heat Transfer, Wiley, New York, 2004
[20] The problem of time-dependent natural convection melting with conduction in the solid, Int. J. Heat Mass Transfer, Volume 32 (1989), pp. 2447-2457
[21] Phase change heat transfer enhancement using copper porous foam, J. Heat Transfer, Volume 130 (2008), p. 082301 (11 pages)
Cited by Sources:
Comments - Policy