Comptes Rendus
Solid–liquid phase change driven by internal heat generation
Comptes Rendus. Mécanique, Volume 340 (2012) no. 7, pp. 471-476.

This article presents results of solid–liquid phase change, the Stefan Problem, where melting is driven internal heat generation, in a cylindrical geometry. The comparison between a quasi-static analytical solution for Stefan numbers less than one and numerical solutions shows good agreement. The computational results of phase change with internal heat generation show how convection cells form in the liquid region. A scale analysis of the same problem shows four distinct regions of the melting process.

Publié le :
DOI : 10.1016/j.crme.2012.03.004
Mots clés : Stefan Problem, Internal heat generation, Scale analysis
John Crepeau 1 ; Ali S. Siahpush 2

1 Department of Mechanical Engineering, PO Box 440902, University of Idaho, Moscow, ID 83844-0902, USA
2 Idaho National Laboratory, PO Box 1625, MS 3760, Idaho Falls, ID 83415-3760, USA
@article{CRMECA_2012__340_7_471_0,
     author = {John Crepeau and Ali S. Siahpush},
     title = {Solid{\textendash}liquid phase change driven by internal heat generation},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {471--476},
     publisher = {Elsevier},
     volume = {340},
     number = {7},
     year = {2012},
     doi = {10.1016/j.crme.2012.03.004},
     language = {en},
}
TY  - JOUR
AU  - John Crepeau
AU  - Ali S. Siahpush
TI  - Solid–liquid phase change driven by internal heat generation
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 471
EP  - 476
VL  - 340
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crme.2012.03.004
LA  - en
ID  - CRMECA_2012__340_7_471_0
ER  - 
%0 Journal Article
%A John Crepeau
%A Ali S. Siahpush
%T Solid–liquid phase change driven by internal heat generation
%J Comptes Rendus. Mécanique
%D 2012
%P 471-476
%V 340
%N 7
%I Elsevier
%R 10.1016/j.crme.2012.03.004
%G en
%F CRMECA_2012__340_7_471_0
John Crepeau; Ali S. Siahpush. Solid–liquid phase change driven by internal heat generation. Comptes Rendus. Mécanique, Volume 340 (2012) no. 7, pp. 471-476. doi : 10.1016/j.crme.2012.03.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.03.004/

[1] J. Stefan, Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere, Sitzungsberichte der k.k. Akademie der Wissenschaften in Wien, Mathematische–Naturwissenschaften, Abteilung II (98), 1889, pp. 965–983.

[2] L.I. Rubinstein The Stefan Problem, AMS Publications, Providence, RI, 1971

[3] R. Viskanta Heat transfer during melting and solidification of metals, J. Heat Transfer, Volume 110 (1988), pp. 1205-1219

[4] L.S. Yao; J. Prusa Melting and freezing, Adv. Heat Transfer, Volume 19 (1989), pp. 1-95

[5] E.A. Semma; M. El Ganaoui; A. Cheddadi; P. Bontoux Étude numérique des instabilités de la phase fluide et de lʼinterface de solidification en croissance dirigée horizontale, C. R. Mecanique, Volume 331 (2003), pp. 631-639

[6] W.L. Chen; M. Ishii; M.A. Grolmes Simple heat conduction model with phase change for reactor fuel pin, Nuclear Sci. Eng., Volume 60 (1976), pp. 452-460

[7] M. El-Genk; A.W. Cronenburg An assessment of fuel freezing and drainage phenomena in a reactor shield plug following a core disruptive accident, Nuclear Eng. Design, Volume 47 (1978), pp. 195-225

[8] F.B. Cheung; T.C. Chawla; D.R. Pedersen The effects of heat generation and wall interaction on freezing and melting in a finite slab, Int. J. Heat Mass Transfer, Volume 27 (1984), pp. 29-37

[9] S.H. Chan; K.Y. Hsu Generalized phase change model for melting and solidification with internal heat generation, J. Thermophysics, Volume 1 (1987), pp. 171-174

[10] Y. Kikuchi; Y. Shigemasa Liquid solidification in laminar tube flow with internal heat sources, Nuclear Eng. Design, Volume 75 (1982), pp. 73-80

[11] F. Incropera; D. DeWitt Fundamentals of Heat and Mass Transfer, Wiley, New York, 2002

[12] D. Poulikakos Conduction Heat Transfer, Prentice Hall, Englewood Cliffs, 1994

[13] J. Crepeau; A. Siahpush Approximate solutions to the Stefan problem with internal heat generation, Heat Mass Transfer, Volume 44 (2008), pp. 787-794

[14] R. Voller; C. Prakash A fixed-grid numerical modeling methodology for convection–diffusion mushy region phase-change problems, Int. J. Heat Mass Transfer, Volume 30 (1987), pp. 1709-1720

[15] D.J. Tritton; M.N. Zarraga Convection in horizontal layers with internal heat generation. Experiments, J. Fluid Mechanics, Volume 30 (1967), pp. 21-31

[16] P.H. Roberts Convection in horizontal layers with internal heat generation. Theory, J. Fluid Mechanics, Volume 30 (1967), pp. 33-49

[17] J.C. Crepeau; A. Siahpush; B. Spotten On the Stefan problem with volumetric energy generation, Heat Mass Transfer, Volume 46 (2009), pp. 119-128

[18] J.C. Crepeau, A. Siahpush, Scale analysis of convective melting with internal heat generation, in: Proc. ASME/JSME 8th Thermal Engineering Joint Conference, paper #44162, Honolulu, Hawaii, 2011.

[19] A. Bejan Convection Heat Transfer, Wiley, New York, 2004

[20] Z. Zhang; A. Bejan The problem of time-dependent natural convection melting with conduction in the solid, Int. J. Heat Mass Transfer, Volume 32 (1989), pp. 2447-2457

[21] A. Siahpush; J. OʼBrien; J. Crepeau Phase change heat transfer enhancement using copper porous foam, J. Heat Transfer, Volume 130 (2008), p. 082301 (11 pages)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

The eponymous, anonymous Joseph Stefan

John Crepeau

C. R. Méca (2012)