Comptes Rendus
Entropy and temperature gradients thermomechanics: Dissipation, heat conduction inequality and heat equation
[Thermomécanique avec gradients dʼentropie et de température : Dissipation, inégalité de la conduction et équation de la chaleur]
Comptes Rendus. Mécanique, Volume 340 (2012) no. 6, pp. 434-443.

Une approche alternative et cohérente, ne faisant pas appel au principe des puissances virtuelles et à la procédure de Coleman–Noll, est utilisée pour obtenir les lois de comportement avec gradients de température ou dʼentropie, ainsi que les équations dʼévolution en thermomécanique. En partant du bilan dʼénergie, une analyse de la dissipation conduit naturellement à la définition de la température et de lʼentropie par des dérivées variationnelles. Tout en préservant les formes classiques des équations, lʼapproche permet dʼétablir les formes cohérentes de lʼinégalité de lʼentropie (second principe) et de la conduction dont une nouvelle forme est proposée. Le formalisme standard généralisé offre ensuite un moyen commode dʼétablir des lois admissibles. La méthodologie est appliquée en prenant dʼabord lʼentropie et son gradient comme variables dʼétat (énergie interne comme potentiel), et ensuite la température et son gradient (énergie libre comme potentiel).

An alternative and consistent approach, not appealing to the principle of virtual power and to Coleman–Noll procedure, is used to derive constitutive and governing equations involving temperature or entropy gradients, in thermomechanics of materials. Using the balance of energy, an analysis of the dissipation naturally leads to the definition of the temperature and the entropy as variational derivatives. The approach preserves the classical forms of the equations and yields to consistent form of the second law and heat conduction inequality. The framework of generalized standard materials is then suitable for deriving admissible constitutive laws. The methodology is applied, first using entropy and its gradient as state variables (with internal energy as thermodynamic potential), and second using temperature and its gradient (starting from the free energy).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2012.04.001
Keywords: Continuum mechanics, Continuum thermodynamics, Entropy gradient, Dissipation, Second law, Heat conduction inequality, Heat equation
Mot clés : Milieux continus, Thermodynamique des milieux continus, Gradient dʼentropie, Gradient de température, Second principe, Inégalité de la conduction de la chaleur, Équation de la conduction
Mahaman-Habibou Maitournam 1

1 Laboratoire de mécanique des solides (LMS), CNRS UMR 7649, École polytechnique, 91128 Palaiseau cedex, France
@article{CRMECA_2012__340_6_434_0,
     author = {Mahaman-Habibou Maitournam},
     title = {Entropy and temperature gradients thermomechanics: {Dissipation,} heat conduction inequality and heat equation},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {434--443},
     publisher = {Elsevier},
     volume = {340},
     number = {6},
     year = {2012},
     doi = {10.1016/j.crme.2012.04.001},
     language = {en},
}
TY  - JOUR
AU  - Mahaman-Habibou Maitournam
TI  - Entropy and temperature gradients thermomechanics: Dissipation, heat conduction inequality and heat equation
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 434
EP  - 443
VL  - 340
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crme.2012.04.001
LA  - en
ID  - CRMECA_2012__340_6_434_0
ER  - 
%0 Journal Article
%A Mahaman-Habibou Maitournam
%T Entropy and temperature gradients thermomechanics: Dissipation, heat conduction inequality and heat equation
%J Comptes Rendus. Mécanique
%D 2012
%P 434-443
%V 340
%N 6
%I Elsevier
%R 10.1016/j.crme.2012.04.001
%G en
%F CRMECA_2012__340_6_434_0
Mahaman-Habibou Maitournam. Entropy and temperature gradients thermomechanics: Dissipation, heat conduction inequality and heat equation. Comptes Rendus. Mécanique, Volume 340 (2012) no. 6, pp. 434-443. doi : 10.1016/j.crme.2012.04.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.04.001/

[1] B.D. Coleman; W. Noll The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Rational Mech. Anal., Volume 13 (1963), pp. 167-178

[2] B.D. Coleman; V.J. Mizel Thermodynamics and departures from Fourierʼs law of heat conduction, Arch. Rational Mech. Anal., Volume 13 (1963), pp. 245-261

[3] B.D. Coleman; M.E. Gurtin Thermodynamics with internal state variables, J. Chem. Phys., Volume 47 (1967), pp. 597-613

[4] B.D. Coleman; M.E. Gurtin Equipresence and constitutive equations for rigid heat conductors, Zeitschrift für Angewandte Mathematik und Physik (ZAMP), Volume 18 (1967), pp. 199-208

[5] I. Muller On the entropy inequality, Arch. Rational Mech. Anal., Volume 26 (1967), pp. 118-141

[6] I. Muller Thermodynamics, Pitman Publishing Limited, London, 1985

[7] G.A. Maugin Internal variables and dissipative structures, J. Non-Equil. Thermodyn., Volume 15 (1990), pp. 173-192

[8] G.A. Maugin On canonical equations of continuum thermomechanics, Mech. Res. Commun., Volume 33 (2006), pp. 705-710

[9] G.A. Maugin On the thermomechanics of continuous media with diffusion and/or weak nonlocality, Arch. Appl. Mech., Volume 75 (2006), pp. 723-738

[10] M. Frémond; B. Nedjar Endommagement et principe des puissances virtuelles, C. R. Acad. Sci. Paris, Ser. II, Volume 317 (1993) no. 7, pp. 857-864

[11] M. Frémond; B. Nedjar Damage, gradient of damage and principle of virtual power, Int. J. Solids Struct., Volume 33 (1996), pp. 1083-1103

[12] M. Frémond Non-Smooth Thermomechanics, Springer, 2002

[13] E. Fried; M.E. Gurtin Continuum theory of thermally induced phase transitions based on an order parameter, Physica D, Volume 68 (1993), pp. 326-343

[14] M.E. Gurtin Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance, Physica D, Volume 92 (1996), pp. 178-192

[15] S. Forest; M. Amestoy Hypertemperature in thermoelastic solids, C. R. Mecanique, Volume 336 (2008) no. 4, pp. 347-353

[16] S. Forest; E.C. Aifantis Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua, International Journal of Solids and Structures, Volume 47 (2010) no. 25–26, pp. 3367-3376

[17] P. Ireman; Q.S. Nguyen Using the gradients of temperature and internal parameters in continuum thermodynamics, C. R. Mecanique, Volume 332 (2004) no. 4, pp. 249-255

[18] Q.S. Nguyen; S. Andrieux The non-local generalized standard approach: a consistent gradient theory, C. R. Mecanique, Volume 333 (2005) no. 2, pp. 139-145

[19] Q.S. Nguyen Gradient thermodynamics and heat equations, C. R. Mecanique, Volume 338 (2010) no. 2, pp. 321-326

[20] E. Lorentz; S. Andrieux Analysis of non-local models through energetic formulations, International Journal of Solids and Structures, Volume 40 (2003), pp. 2905-2936

[21] E. Lorentz; S. Andrieux A variational formulation for nonlocal damage models, Int. J. Plasticity, Volume 15 (2003), pp. 119-138

[22] A. Berezovski; J. Engelbrecht; G.A. Maugin Generalized thermomechanics with dual internal variables, Arch. Appl. Mech., Volume 75 (2010), pp. 1-12

[23] H. Gouin Adiabatic waves along interfacial layers near the critical point, C. R. Mecanique, Volume 332 (2004) no. 4, pp. 285-292

[24] H. Gouin; T. Ruggeri Mixture of fluids involving entropy gradients and acceleration waves in interfacial layers, European Journal of Mechanics B/Fluids, Volume 24 (2005) no. 5, pp. 596-613

[25] A.E. Green; P.M. Naghdi On thermodynamics and the nature of the second law, Proc. R. Soc. Lond. A, Volume 357 (1977), pp. 253-270

[26] B. Halphen; Q.S. Nguyen Sur les matériaux standards généralisés, J. Mécanique, Volume 14 (1975), pp. 39-63

[27] P. Germain; Q.S. Nguyen; P. Suquet Continuum thermodynamics, Journal of Applied Mechanics, Volume 50 (1983) no. 12, pp. 1010-1020

[28] J.M. Cardona; S. Forest; R. Sievert Towards a theory of second grade thermoelasticity, Extracta Math., Volume 14 (1999) no. 2, pp. 127-140

[29] S. Forest; J.M. Cardona; R. Sievert Thermoelasticity of second-grade media (G.A. Maugin; R. Drouot; F. Sidoroff, eds.), Continuum Thermomechanics, The Art and Science of Modelling Material Behaviour, Paul Germainʼs Anniversary Volume, Kluwer Academic Publishers, 2000, pp. 163-176

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Hypertemperature in thermoelastic solids

Samuel Forest; Michel Amestoy

C. R. Méca (2008)


Using the gradients of temperature and internal parameters in Continuum Thermodynamics

Peter Ireman; Quoc-Son Nguyen

C. R. Méca (2004)


Gradient thermodynamics and heat equations

Quoc-Son Nguyen

C. R. Méca (2010)