[Modèle thermodynamique à gradients et l'équation thermique]
On propose dans cette Note un cadre thermodynamique incluant le gradient de la température comme une variable d'état supplémentaire. Cette théorie est construite à partir d'une relation originale reliant les expresssions de l'énergie interne et l'énergie libre par transformation de Legendre étendue aux variables
In this Note, a thermodynamic description is proposed to include the gradient of the temperature in the set of state variables. It is based upon an original expression of the entropy and of the internal energy taking account of the presence of the temperature gradient by Legendre transform with respect to the variable
Accepté le :
Publié le :
Mots-clés : Milieux continus, Thermodynamique des milieux continus, Variable d'état, Gradient de température, Équation thermique
Quoc-Son Nguyen 1
@article{CRMECA_2010__338_6_321_0, author = {Quoc-Son Nguyen}, title = {Gradient thermodynamics and heat equations}, journal = {Comptes Rendus. M\'ecanique}, pages = {321--326}, publisher = {Elsevier}, volume = {338}, number = {6}, year = {2010}, doi = {10.1016/j.crme.2010.07.010}, language = {en}, }
Quoc-Son Nguyen. Gradient thermodynamics and heat equations. Comptes Rendus. Mécanique, Volume 338 (2010) no. 6, pp. 321-326. doi : 10.1016/j.crme.2010.07.010. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.07.010/
[1] Cours de mécanique des milieux continus, Masson, Paris, 1973
[2] S. Andrieux, P. de Bonniers, Including thermal gradients into thermo-elastic damaging constitutive laws, Rapport EDF HI-74:049-0, 1994.
[3] Thermoelasticity of second-grade media (G. Maugin; R. Drouot; F. Sidoroff, eds.), Continuum Thermodynamics, Kluwer, Dordrecht, 2000
[4] Hypertemperature in thermoelastic solids, C. R. Mecanique, Volume 336 (2008), pp. 347-353
[5] The non-local generalized standard approach: a consistent gradient theory, C. R. Mecanique, Volume 333 (2005), pp. 139-145
[6] Contact unilatéral avec adhérence : une théorie du premier gradient (G. Del Piero; F. Maceri, eds.), Unilateral Problems in Structural Analysis, CISM Course, vol. 304, Springer-Verlag, Wien, 1985, pp. 117-137
[7] Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance, Physica D, Volume 92 (1996), pp. 178-192
[8] Thermodynamics with internal variables, part 1: General concepts, J. Non-Equilib. Thermodyn., Volume 19 (1994), pp. 217-249
[9] Cours de mécanique des milieux continus, Gauthier-Villars, Paris, 1966
[10] Conduction of Heat in Solids, Oxford University Press, London, 1959
[11] Sur une forme de l'équation de la chaleur éliminant le paradoxe de la propagationn instantanée, C. R. Acad. Sci., Volume 247 (1958), pp. 431-432
[12] A general theory of heat conduction with finite wave speeds, Arch. Rat. Mech. Anal., Volume 32 (1968), pp. 113-126
[13] Extended Thermodynamics, Springer, Berlin, 1993
[14] Experiment and analysis for non-Fourier conduction in materials with non-homogeneous inner structure, Int. J. Thermal Sci., Volume 42 (2003), pp. 541-552
[15] Internal variables and dissipative structures, J. Non-Equilib. Thermodyn., Volume 15 (1990), pp. 173-192
[16] Using the gradients of temperature and internal parameters in continuum thermodynamics, C. R. Mecanique, Volume 332 (2004), pp. 249-255
[17] Microstructural influence on heat conduction, Int. J. Heat Mass Transfer, Volume 38 (1995), pp. 3181-3195
- Designing a digital twin for micromanufacturing processes, Advances in Mechanical Engineering, Volume 14 (2022) no. 6 | DOI:10.1177/16878132221096004
- Heat conduction in microstructured solids under localised pulse loading, Continuum Mechanics and Thermodynamics, Volume 33 (2021) no. 6, p. 2493 | DOI:10.1007/s00161-021-01032-0
- Model reduction in computational homogenization for transient heat conduction, Computational Mechanics, Volume 65 (2020) no. 1, pp. 249-266 | DOI:10.1007/s00466-019-01767-3 | Zbl:1491.80005
- Continuum thermomechanics of nonlinear micromorphic, strain and stress gradient media, Philosophical Transactions of the Royal Society of London. A. Mathematical, Physical and Engineering Sciences, Volume 378 (2020) no. 2170, p. 19 (Id/No 20190169) | DOI:10.1098/rsta.2019.0169 | Zbl:1462.74013
- Thermodynamically consistent multiscale formulation of a thermo-mechanical problem with phase transformations, Continuum Mechanics and Thermodynamics, Volume 31 (2019) no. 1, p. 273 | DOI:10.1007/s00161-018-0682-2
- Interfacial reaction mechanism of TiBw/Ti6Al4V composites and Inconel 718 alloys by GTAW heat transmission, Science China Technological Sciences, Volume 62 (2019) no. 12, p. 2293 | DOI:10.1007/s11431-019-1452-8
- Use and Abuse of the Method of Virtual Power in Generalized Continuum Mechanics and Thermodynamics, Generalized Models and Non-classical Approaches in Complex Materials 1, Volume 89 (2018), p. 311 | DOI:10.1007/978-3-319-72440-9_16
- The Micromorphic Approach to Generalized Heat Equations, Journal of Non-Equilibrium Thermodynamics, Volume 42 (2017) no. 4 | DOI:10.1515/jnet-2016-0080
- On a New Kinetic Modelling Approach of the Irreversible Quasi-Surface Metallurgical Phase Transformations, Journal of Solid State Physics, Volume 2014 (2014), p. 1 | DOI:10.1155/2014/163725
Cité par 9 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier