Comptes Rendus
Can cooperation slow down emergency evacuations?
Comptes Rendus. Mécanique, Volume 340 (2012) no. 9, pp. 625-628.

We study the motion of pedestrians through obscure corridors where the lack of visibility hides the precise position of the exits. Using a lattice model, we explore the effects of cooperation on the overall exit flux (evacuation rate). More precisely, we study the effect of the buddying threshold (of no exclusion per site) on the dynamics of the crowd. In some cases, we note that if the evacuees tend to cooperate and act altruistically, then their collective action tends to favor the occurrence of disasters.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2012.09.003
Keywords: Granular media, Dynamics of crowd motions, Lattice model, Evacuation scenario

Emilio N.M. Cirillo 1; Adrian Muntean 2

1 Dipartimento di Scienze di Base e Applicate per lʼIngegneria, Sapienza Università di Roma, via A. Scarpa 16, 00161, Italy
2 Department of Mathematics and Computer Science, CASA – Center for Scientific Computing and Applications, ICMS – Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
@article{CRMECA_2012__340_9_625_0,
     author = {Emilio N.M. Cirillo and Adrian Muntean},
     title = {Can cooperation slow down emergency evacuations?},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {625--628},
     publisher = {Elsevier},
     volume = {340},
     number = {9},
     year = {2012},
     doi = {10.1016/j.crme.2012.09.003},
     language = {en},
}
TY  - JOUR
AU  - Emilio N.M. Cirillo
AU  - Adrian Muntean
TI  - Can cooperation slow down emergency evacuations?
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 625
EP  - 628
VL  - 340
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crme.2012.09.003
LA  - en
ID  - CRMECA_2012__340_9_625_0
ER  - 
%0 Journal Article
%A Emilio N.M. Cirillo
%A Adrian Muntean
%T Can cooperation slow down emergency evacuations?
%J Comptes Rendus. Mécanique
%D 2012
%P 625-628
%V 340
%N 9
%I Elsevier
%R 10.1016/j.crme.2012.09.003
%G en
%F CRMECA_2012__340_9_625_0
Emilio N.M. Cirillo; Adrian Muntean. Can cooperation slow down emergency evacuations?. Comptes Rendus. Mécanique, Volume 340 (2012) no. 9, pp. 625-628. doi : 10.1016/j.crme.2012.09.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.09.003/

[1] D. Nilsson; M. Johansson; H. Frantzich Evacuation experiment in a road tunnel: A study of human behaviour and technical installations, Fire Safety Journal, Volume 44 (2009) no. 4, pp. 458-468

[2] T.J. Shields; K.E. Boyce A study of evacuation from large retail stores, Fire Safety Journal, Volume 35 (2000) no. 1, pp. 25-49

[3] M. Kobes; I. Helsloot; B. de Vries; J.G. Post Building safety and human behaviour in fire: A literature review, Fire Safety Journal, Volume 45 (2010) no. 1, pp. 1-11

[4] W. Yuan; K.H. Tan A model for simulation of crowd behaviour in the evacuation from a smoke-filled compartment, Physica A: Statistical Mechanics and its Applications, Volume 390 (2011), pp. 4210-4218

[5] Z.-M. Fang; W.-G. Song; J. Zhang; H. Wu A multi-grid model for evacuation coupling with the effects of fire products, Fire Technology, Volume 48 (2012), pp. 91-104

[6] Y. Zheng; B. Jia; X.-Gang Li; N. Zhu Evacuation dynamics with fire spreading based on cellular automaton, Physica A: Statistical Mechanics and its Applications, Volume 390 (2011), pp. 3147-3156

[7] S. Grimaz; E. Tosolini PASS: a test-based method for a preliminary assessment of the egress system safety (A. Cuesta; V. Alonso; J. Cuesta, eds.), Evacuation and Human Behavior in Emergency Situations, Universidad de Cantabria, Santanderi, 2011, pp. 193-207

[8] J.L. Bryan, Behavioral response to fire and smoke, in: P.P. DiNenno, M.A. Quincy (Eds.), SFPE Handbook of Fire Protection Engineering, National Fire Protection, 2002, pp. 3-315–3-341, Chapter 12.

[9] F. Venuti; L. Bruno An interpretative model of the pedestrian fundamental relation, Comptes Rendus Mécanique, Volume 335 (2007), pp. 194-200

[10] D. Helbing; P. Molnar Social force model for pedestrian dynamics, Physical Review E, Volume 51 (1995) no. 5, pp. 4282-4286

[11] B. Piccoli; A. Tosin Time-evolving measures and macroscopic modeling of pedestrian flow, Arch. Ration. Mech. Anal., Volume 199 (2011) no. 3, pp. 707-738

[12] J.H.M. Evers; A. Muntean Modeling micro-macro pedestrian counterflow in heterogeneous domains, Nonlinear Phenomena in Complex Systems, Volume 14 (2011) no. 1, pp. 27-37

[13] P. Degond; L. Navoret; R. Bon; D. Sanchez Congestion in a macroscopic model of self-driven particles modeling gregariousness, Journal of Statistical Physics, Volume 138 (2010), pp. 85-125

[14] A. Schadschneider; D. Chowdhury; K. Nishinari Stochastic Transport in Complex Systems, Elsevier, 2011

[15] A. Kirchner; A. Schadschneider Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics, Physica A: Statistical Mechanics and its Applications, Volume 312 (2002) no. 12, pp. 260-276

[16] X. Guo; J. Chen; Y. Zheng; J. Wei A heterogeneous lattice gas model for simulating pedestrian evacuation, Physica A: Statistical Mechanics and its Applications, Volume 391 (2012) no. 3, pp. 582-592

[17] D. Andreucci; D. Bellaveglia; E.N.M. Cirillo; S. Marconi Monte Carlo study of gating and selection in potassium channels, Phys. Rev. E, Volume 84 (2011), p. 021920

[18] D. Andreucci; D. Bellaveglia; E.N.M. Cirillo; S. Marconi Effect of intracellular diffusion on current–voltage curves in potassium channels, 2012 | arXiv

Cited by Sources:

Comments - Policy