Comptes Rendus
Mean velocity profiles of two-dimensional fully developed turbulent flows
Comptes Rendus. Mécanique, Volume 340 (2012) no. 9, pp. 629-640.

In the work presented in this Note, an Indirect Turbulence Model (ITM) is proposed to derive the mean velocity profiles in wall-bounded flows in hydraulically smooth channels having a very wide rectangular cross section. The analytical expression of the mean velocity distribution is given. The connection between the velocity distribution parameters and Reynoldsʼ number is indicated. The thickness of the viscous sublayer is evaluated. The skin friction coefficient is computed, and the analytical expression of the turbulent viscosity coefficient is provided.

The validity of the proposed model is verified with reference to the velocity distributions, available in the literature, obtained with Direct Numerical Simulation (DNS) of Navier–Stokesʼ equations.

Un modèle de turbulence a été développé pour représenter la distribution de la vitesse moyenne locale dans un écoulements bidimensionnel turbulent. Le modèle proposé permet de décrire la distribution de la vitesse moyenne (en fonction du nombre de Reynolds) dans un canal lisse à section rectangulaire très large. Le modèle permet aussi dʼévaluer lʼépaisseur de la sous-couche visqueuse, la viscosité turbulente et le coefficient de frottement local.

Le modèle proposé a été vérifié avec succès en utilisant les distributions de la vitesse disponibles dans la littérature et obtenues par intégration numérique directe des équations de Navier–Stokes (DNS).

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2012.09.004
Keywords: Fluid mechanics, Turbulent wall-bounded flows, Channel flows
Mot clés : Mécanique des fluides, Écoulement bidimensionnel turbulent

Carmine Di Nucci 1; Aniello Russo Spena 1

1 Dipartimento di Ingegneria Civile, Edile-Architettura, Ambientale, University of LʼAquila, 67100 LʼAquila, Italy
@article{CRMECA_2012__340_9_629_0,
     author = {Carmine Di Nucci and Aniello Russo Spena},
     title = {Mean velocity profiles of two-dimensional fully developed turbulent flows},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {629--640},
     publisher = {Elsevier},
     volume = {340},
     number = {9},
     year = {2012},
     doi = {10.1016/j.crme.2012.09.004},
     language = {en},
}
TY  - JOUR
AU  - Carmine Di Nucci
AU  - Aniello Russo Spena
TI  - Mean velocity profiles of two-dimensional fully developed turbulent flows
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 629
EP  - 640
VL  - 340
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crme.2012.09.004
LA  - en
ID  - CRMECA_2012__340_9_629_0
ER  - 
%0 Journal Article
%A Carmine Di Nucci
%A Aniello Russo Spena
%T Mean velocity profiles of two-dimensional fully developed turbulent flows
%J Comptes Rendus. Mécanique
%D 2012
%P 629-640
%V 340
%N 9
%I Elsevier
%R 10.1016/j.crme.2012.09.004
%G en
%F CRMECA_2012__340_9_629_0
Carmine Di Nucci; Aniello Russo Spena. Mean velocity profiles of two-dimensional fully developed turbulent flows. Comptes Rendus. Mécanique, Volume 340 (2012) no. 9, pp. 629-640. doi : 10.1016/j.crme.2012.09.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.09.004/

[1] F.M. White Fluid Mechanics, McGraw–Hill, New York, 2010

[2] J.H. Spurk; N. Aksel Fluid Mechanics, Springer-Verlag, Berlin, 2008

[3] G. Bucci; E. Fiorucci; A. Russo Spena; C. Di Nucci Analysis of turbulent flow speed profiles in pressure pipes using the dissimilar similitude technique applied to an electrolytic tank: implementation and experimental characterization, IEEE Trans. Instr. Meas., Volume 57 (2008), pp. 1547-1553

[4] R. Absi A simple eddy viscosity formulation for turbulent boundary layers near smooth walls, C. R. Mecanique, Volume 337 (2009), pp. 158-165

[5] C. Di Nucci; E. Fiorucci Mean velocity profiles of fully-developed turbulent flows near smooth walls, C. R. Mecanique, Volume 339 (2011), pp. 388-395

[6] B.J. McKeon; F.L. Morrison; J. Li; W. Jiang; A.J. Smits Further observations on the mean velocity in fully-developed pipe flow, J. Fluid Mech., Volume 501 (2004), pp. 135-147

[7] E.-S. Zanoun, Answers to some open questions in wall-bounded laminar and turbulent shear flows, PhD thesis, Lehrstuhl für Strömungsmechanik, Universität Erlangen–Nürnberg, 2003.

[8] O.A.B. Saleh, Fully developed turbulent smooth and rough channel and pipe flows, PhD thesis, Lehrstuhl für Strömungsmechanik, Universität Erlangen–Nürnberg, 2005.

[9] G.I. Barenblatt Scaling laws for fully developed turbulent shear flows. Part 1: Basic hypotheses and analysis, J. Fluid Mech., Volume 248 (1993), pp. 513-520

[10] G.I. Barenblatt; V.M. Prostokishin Scaling laws for fully developed turbulent shear flows. Part 2: Processing of experimental data, J. Fluid Mech., Volume 248 (1993), pp. 521-529

[11] N. Afzal; A. Seena; A. Bushra Power law velocity profile in fully developed turbulent pipe and channel flows, J. Hydraulic Eng., Volume 133 (2007), pp. 1080-1086

[12] M.H. Buschmann; M. Gad-el-Hak Evidence of nonlogarithmic behavior of turbulent channel and pipe flow, AIAA J., Volume 47 (2009), pp. 535-541

[13] M.V. Zagarola; A.J. Smits Scaling of the mean velocity profile of turbulent pipe flow, Phys. Rev. Lett., Volume 78 (1997), pp. 239-242

[14] M.H. Buschmann; M. Gad-el-Hak Generalized logarithmic law and its consequences, AIAA J., Volume 41 (2003), pp. 40-48

[15] M.H. Buschmann; M. Gad-el-Hak Recent developments in scaling of wall-bounded flows, Prog. Aerospace Sci., Volume 42 (2007), pp. 419-467

[16] W.K. George Is there a universal log law for turbulent wall-bounded flows?, Phil. Trans. R. Soc. A, Volume 365 (2007), pp. 789-806

[17] R.L. Panton Composite asymptotic expansions and scaling wall turbulence, Phil. Trans. R. Soc. A, Volume 365 (2007), pp. 733-754

[18] H.M. Nagib; K.A. Chauhan Variations of von Kármán coefficient in canonical flows, Phys. Fluids, Volume 20 (2008), p. 101518

[19] K. Gersten; H. Herwig Strömungsmechanik, Fundamentals and Advances in the Engineering Science, Verlag Vieweg, Wiesbaden, 1992

[20] V.S. Lʼvov; I. Procaccia; O. Rudenko Universal model of finite Reynolds number turbulent flow in channels and pipes, Phys. Rev. Lett., Volume 100 (2008), p. 054504

[21] R.B. Dean Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow, J. Fluids Eng., Volume 100 (1978), pp. 215-223

[22] C. Di Nucci, A. Russo Spena, Un modello indiretto di turbolenza per la deduzione della distribuzione di velocità in condotti idraulicamente lisci. Parte I – Presupposto ad indagini numeriche, in: Proc. 31st Convegno di Idraulica e Costruzioni Idrauliche, Perugia, Italy, 2008, p. 395 (CD-ROM).

[23] C. Di Nucci, M. Petrilli, Un modello indiretto di turbolenza per la deduzione della distribuzione di velocità in condotti idraulicamente lisci. Parte II – Determinazione dei parametri della distribuzione di velocità, in: Proc. 31st Convegno di Idraulica e Costruzioni Idrauliche, Perugia, Italy, 2008, p. 396 (CD-ROM).

[24] A. Quarteroni Modellistica Numerica per Problemi Differenziali, Springer, Milano, 2008

[25] K. Iwamoto; Y. Suzuki; N. Kasagi Reynolds number effect on wall turbulence: toward effective feedback control, Int. J. Heat Fluid Flow, Volume 23 (2002), pp. 678-689

[26] K. Iwamoto, Database of fully developed channel flow, THTLAB Internal Report No. ILR-0201, Dept. Mech. Eng., Univ. Tokyo, 2002.

[27] H. Abe; H. Kawamura; Y. Matsuo Surface heat-flux fluctuations in a turbulent channel flow up to Reτ=1020 with Pr=0.025 and 0.71, Int. J. Heat Fluid Flow, Volume 25 (2004), pp. 404-419

[28] R.D. Moser; J. Kim; N.N. Mansour Direct numerical simulation of turbulent channel flow up to Reτ=590, Phys. Fluids, Volume 11 (1999), pp. 943-945

[29] J.C. del Álamo; J. Jiménez; P. Zandonade; R.D. Moser Scaling of the energy spectra of turbulent channels, J. Fluid Mech., Volume 500 (2004), pp. 135-144

[30] S. Hoyas; J. Jiménez Scaling of the velocity fluctuations in turbulent channels up to Reτ=2003, Phys. Fluids, Volume 18 (2006), p. 011702

[31] A.N. Shiryaev Probability, Springer-Verlag, New York, 1996

[32] H. Heyer Theory of Statistical Experiments, Springer-Verlag, New York, 1982

[33] Y. Tsuji; I. Nakamura Probability density function in the log-law region of low Reynolds number turbulent boundary layer, Phys. Fluids, Volume 11 (1999), pp. 647-658

[34] J.M. Österlund; A.V. Johansson; H.M. Nagib; M.H. Hites A note on the overlap region in turbulent boundary layers, Phys. Fluids, Volume 12 (2000), pp. 1-4

[35] E.-S. Zanoun; F. Durst; H. Nagib Evaluating the law of the wall in two-dimensional fully developed turbulent channel flows, Phys. Fluids, Volume 15 (2003), pp. 3079-3089

Cited by Sources:

Comments - Policy