[Prédiction des suies par simulation aux grandes échelles de chambres de combustion à géométrie complexe]
Cet article aborde la modélisation de la production des suies pour des simulations aux grandes échelles (SGE) de géométries complexes. De tels calculs imposent un compromis entre précision et temps de calcul qui limite le choix des modèles de suie aux approches semi-empiriques. La présence dʼacétylène étant une condition nécessaire à la nucléation des particules de suie, le modèle de Leung et al. qui intègre cette caractéristique est choisi et utilisé dans ce travail. Cependant, la concentration dʼacétylène nʼest pas fournie par les chimies réduites utilisées dans les SGE de géométries complexes et une méthodologie a été développée pour prédire cette espèce clé à travers une technique de tabulation. Avec cette méthodologie, le modèle de Leung et al. est tout dʼabord testé et validé à partir de mesures de flammes laminaires prémélangées. Ensuite, la méthode de prédiction des suies est appliquée à la SGE de la chambre de combustion dʼun moteur dʼhélicoptère.
This article is dedicated to the modeling of soot production in Large-Eddy Simulations (LES) of complex geometries. Such computations impose a trade-off between accuracy and CPU cost which limits the choice of soot models to semi-empirical ones. As the presence of acetylene is a necessary condition for soot inception, the Leung et al. model that accounts for this feature is chosen and used in this work. However, acetylene concentration is not provided by the reduced chemistries used in LES of complex geometries and a methodology has been developed to predict this key species through a tabulation technique. With this methodology, the model of Leung et al. is first tested and validated against measured laminar premixed flames. Then, the soot prediction method is applied to the LES of the combustion chamber of a helicopter engine.
Mot clés : Combustion, Modélisation des suies, Chimie complexe, Simulation aux grandes échelles
Guillaume Lecocq 1 ; Ignacio Hernández 1 ; Damien Poitou 1 ; Eléonore Riber 1 ; Bénédicte Cuenot 1
@article{CRMECA_2013__341_1-2_230_0, author = {Guillaume Lecocq and Ignacio Hern\'andez and Damien Poitou and El\'eonore Riber and B\'en\'edicte Cuenot}, title = {Soot prediction by {Large-Eddy} {Simulation} of complex geometry combustion chambers}, journal = {Comptes Rendus. M\'ecanique}, pages = {230--237}, publisher = {Elsevier}, volume = {341}, number = {1-2}, year = {2013}, doi = {10.1016/j.crme.2012.10.002}, language = {en}, }
TY - JOUR AU - Guillaume Lecocq AU - Ignacio Hernández AU - Damien Poitou AU - Eléonore Riber AU - Bénédicte Cuenot TI - Soot prediction by Large-Eddy Simulation of complex geometry combustion chambers JO - Comptes Rendus. Mécanique PY - 2013 SP - 230 EP - 237 VL - 341 IS - 1-2 PB - Elsevier DO - 10.1016/j.crme.2012.10.002 LA - en ID - CRMECA_2013__341_1-2_230_0 ER -
%0 Journal Article %A Guillaume Lecocq %A Ignacio Hernández %A Damien Poitou %A Eléonore Riber %A Bénédicte Cuenot %T Soot prediction by Large-Eddy Simulation of complex geometry combustion chambers %J Comptes Rendus. Mécanique %D 2013 %P 230-237 %V 341 %N 1-2 %I Elsevier %R 10.1016/j.crme.2012.10.002 %G en %F CRMECA_2013__341_1-2_230_0
Guillaume Lecocq; Ignacio Hernández; Damien Poitou; Eléonore Riber; Bénédicte Cuenot. Soot prediction by Large-Eddy Simulation of complex geometry combustion chambers. Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 230-237. doi : 10.1016/j.crme.2012.10.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.10.002/
[1] Quantitative measurements of the generation of hydroxyl radicals by soot particles in a surrogate lung fluid, Atmos. Environ., Volume 40 (2006) no. 6, pp. 1043-1052
[2] Insights into the role of soot aerosols in cirrus clouds formation, Atmos. Chem. Phys., Volume 7 (2007), pp. 4203-4227
[3] Radiation heat transfer in combustion systems, Prog. Energy Combust. Sci., Volume 13 (1987), pp. 97-160
[4] A numerical and experimental study of a laminar sooting coflow Jet-A1 diffusion flame, Proc. Combust. Inst., Volume 33 (2011), pp. 601-608
[5] Modelling soot formation in a laminar diffusion flame burning a surrogate kerosene fuel, Proc. Combust. Inst., Volume 31 (2007), pp. 3139-3146
[6] A simplified reaction mechanism for soot formation in nonpremixed flames, Combust. Flame, Volume 87 (1991), pp. 289-305
[7] A two-step chemical scheme for Large-Eddy Simulation of kerosene–air flames, Combust. Flame, Volume 157 (2010) no. 7, pp. 1364-1373
[8] Modeling soot formation and burnout in a high temperature laminar diffusion flame burning under oxygen-enriched conditions, Combust. Flame, Volume 101 (1995), pp. 491-500
[9] Development and validation of a new soot formation model for gas turbine combustor simulations, Combust. Flame, Volume 157 (2010), pp. 246-258
[10] Calculating the soot particle size distribution function in turbulent diffusion flames using a sectional method, Proc. Combust. Inst., Volume 31 (2007) no. 1, pp. 667-674
[11] J. Singh, Detailed soot modelling in laminar premixed flames, PhD thesis, Cambridge University, July 2006.
[12] Hybrid method of moments for modeling soot formation and growth, Combust. Flame, Volume 156 ( June 2009 ) no. 6, pp. 1143-1155
[13] Soot formation in laminar premixed ethylene/air flames at atmospheric pressure, Combust. Flame, Volume 108 (1997), pp. 471-493
[14] A computational study of sooting limits in laminar premixed flames of ethane, ethylene, and acetylene, Combust. Flame, Volume 93 (1993), pp. 467-482
[15] Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion, Proc. Combust. Inst., Volume 28 (2000), pp. 1901-1908
[16] Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids, J. Comput. Phys., Volume 202 (2005) no. 2, pp. 710-736
[17] David G. Goodwin, Cantera code site, July 2009.
[18] J. Luche, Elaboration of reduced kinetic models of combustion. Application to a kerosene mechanism, PhD thesis, Université dʼOrléans, 2003.
[19] Premixed turbulent combustion modeling using a tabulated detailed chemistry and PDF, Proc. Combust. Inst., Volume 30 (2005) no. 1, pp. 867-874
[20] Large-eddy simulation of a fuel-lean premixed turbulent swirl-burner, Combust. Flame, Volume 155 (2008) no. 1–2, pp. 247-266
[21] Soot and NO formation in counterflow ethylene/oxygen/nitrogen diffusion flames, Combust. Theory Model., Volume 8 (2004) no. 3, pp. 475-489
[22] Propene pyrolysis and oxidation kinetics in a flow reactor and laminar flames, Combust. Flame, Volume 119 (1999), pp. 375-399
[23] I. Hernández, Modélisation des suies et simulations aux grandes échelles des instabilités thermo-acoustiques, PhD thesis, Université de Toulouse, 2011.
[24] I. Hernandez, G. Lecocq, D. Poitou, E. Riber, B. Cuenot, Computations of soot formation in ethylene/air counterflow diffusion flames and its interaction with radiation, in: INCA Conference, 2011.
[25] Large eddy simulation of self-excited azimuthal modes in annular combustors, Proc. Combust. Inst., Volume 32 (2009), pp. 2909-2916
[26] G. Staffelbach, P. Wolf, R. Balakrishnan, A. Roux, T. Poinsot, Azimuthal instabilities in annular combustion chambers, in: Proceedings of the Summer Program, CTR, 2010, pp. 259–269.
[27] A thickened flame model for large eddy simulations of turbulent premixed combustion, Phys. Fluids, Volume 12 (2000) no. 7, pp. 1843-1863
[28] General circulation experiments with the primitive equations: 1. The basic experiment, Mon. Weather Rev., Volume 91 (1963), pp. 99-164
[29] J. Amaya, E. Collado, B. Cuenot, T. Poinsot, Coupling LES, radiation and structure in gas turbine simulations, in: Proceedings of the Summer Program, CTR, 2010, pp. 239–249.
Cité par Sources :
Commentaires - Politique