Comptes Rendus
Combustion, flow and spray dynamics for aerospace propulsion
Computations of soot formation in ethylene/air counterflow diffusion flames and its interaction with radiation
[Calcul de la formation des suies sur des flammes de diffusion à contre-courant de éthylène/air]
Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 238-246.

Une méthodologie est proposée pour le calcul des niveaux de suies produits dans des flammes laminaires monodimensionnelles. Cette méthode est appliquée à une série de flammes de diffusion à contre-courant éthylène/air, largement référencées et documentées dans la littérature, et calculées avec un mécanisme chimique détaillé (Davis et al., 1999 [1]) et le modèle semi-empirique à deux équations de Leung et Lindstedt (1991) [2]. Le modèle de suie a été corrigé afin dʼobtenir un meilleur accord avec les mesures expérimentales de Hwang et Chung (2001) [3]. Afin de prendre en compte les pertes thermiques radiatives, une deuxième série de simulations couplées gaz/suies/rayonnement de ces flammes à contre-courant a été réalisée. Cette démarche permet dʼévaluer lʼeffet du rayonnement des suies et de la phase gazeuse sur la formation des suies et sur la structure de flamme.

A methodology is presented which allows to predict soot levels produced in simple, one-dimensional laminar flames. The method is applied to the calculation of a set of well documented ethylene/air counterflow diffusion flames, using a detailed chemical mechanism (Davis et al., 1999 [1]) and a semi-empirical, two-equation soot model from Leung and Lindstedt (1991) [2]. Modifications of the original soot model are made in order to retrieve the experimental measurements of Hwang and Chung (2001) [3]. To account for radiative heat losses, a second series of fully coupled gas/soot/radiation simulations of the counterflow flames is performed. This allows to assess the effect of soot and gas radiation on soot formation and on the flame structure.

Publié le :
DOI : 10.1016/j.crme.2012.11.005
Keywords: Soot, Radiation, Counterflow diffusion flames
Mot clés : Suies, Rayonnement, Flammes de diffusion à contre-courant
Ignacio Hernández 1 ; Guillaume Lecocq 1 ; Damien Poitou 1 ; Eléonore Riber 1 ; Bénédicte Cuenot 1

1 CERFACS, 42, avenue Gaspard-Coriolis, 31057 Toulouse, France
@article{CRMECA_2013__341_1-2_238_0,
     author = {Ignacio Hern\'andez and Guillaume Lecocq and Damien Poitou and El\'eonore Riber and B\'en\'edicte Cuenot},
     title = {Computations of soot formation in ethylene/air counterflow diffusion flames and its interaction with radiation},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {238--246},
     publisher = {Elsevier},
     volume = {341},
     number = {1-2},
     year = {2013},
     doi = {10.1016/j.crme.2012.11.005},
     language = {en},
}
TY  - JOUR
AU  - Ignacio Hernández
AU  - Guillaume Lecocq
AU  - Damien Poitou
AU  - Eléonore Riber
AU  - Bénédicte Cuenot
TI  - Computations of soot formation in ethylene/air counterflow diffusion flames and its interaction with radiation
JO  - Comptes Rendus. Mécanique
PY  - 2013
SP  - 238
EP  - 246
VL  - 341
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crme.2012.11.005
LA  - en
ID  - CRMECA_2013__341_1-2_238_0
ER  - 
%0 Journal Article
%A Ignacio Hernández
%A Guillaume Lecocq
%A Damien Poitou
%A Eléonore Riber
%A Bénédicte Cuenot
%T Computations of soot formation in ethylene/air counterflow diffusion flames and its interaction with radiation
%J Comptes Rendus. Mécanique
%D 2013
%P 238-246
%V 341
%N 1-2
%I Elsevier
%R 10.1016/j.crme.2012.11.005
%G en
%F CRMECA_2013__341_1-2_238_0
Ignacio Hernández; Guillaume Lecocq; Damien Poitou; Eléonore Riber; Bénédicte Cuenot. Computations of soot formation in ethylene/air counterflow diffusion flames and its interaction with radiation. Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 238-246. doi : 10.1016/j.crme.2012.11.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.11.005/

[1] S.G. Davis; C.K. Law; H. Wang Propene pyrolysis and oxidation kinetics in a flow reactor and laminar flames, Combust. Flame, Volume 119 (1999), pp. 375-399

[2] K.M. Leung; R.P. Lindstedt A simplified reaction mechanism for soot formation in nonpremixed flames, Combust. Flame, Volume 87 (1991), pp. 289-305

[3] J.Y. Hwang; S.H. Chung Growth of soot particles in counterflow diffusion flames of ethylene, Combust. Flame, Volume 125 (2001), pp. 752-762

[4] G. Blanquart; P. Pepiot-Desjardins; H. Pitsch Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors, Combust. Flame, Volume 156 (2008), pp. 588-607

[5] M.E. Mueller; G. Blanquart; H. Pitsch Hybrid method of moments for modeling soot formation and growth, Combust. Flame, Volume 156 ( June 2009 ) no. 6, pp. 1143-1155

[6] B. Kärcher; O. Möhler; P.J. DeMott; S. Pechtl; F. Yu Insights into the role of soot aerosols in cirrus clouds formation, Atmos. Chem. Phys., Volume 7 (2007), pp. 4203-4227

[7] H. Jung; B. Guo; C. Anastasio; I.M. Kennedy Quantitative measurements of the generation of hydroxyl radicals by soot particles in a surrogate lung fluid, Atmos. Environ., Volume 40 (2006) no. 6, pp. 1043-1052

[8] R. Viskanta; M.P. Mengük Radiation heat transfer in combustion systems, Prog. Energy Combust. Sci., Volume 13 (1987), pp. 97-160

[9] Ian M. Kennedy Models of soot formation and oxidation, Prog. Energy Combust. Sci., Volume 23 (1997), pp. 95-132

[10] N.J. Brown; K.L. Revzan; M. Frenklach Detailed kinetic modeling of soot formation in ethylene/air mixtures reacting in a perfectly stirred reactor, Symp. (Int.) Combust., Volume 27 (1998) no. 1, pp. 1573-1580

[11] B.S. Haynes; G.Gg. Wagner Soot formation, Prog. Energy Combust. Sci., Volume 7 (1981), pp. 229-237

[12] J.B. Moss; C.D. Stewart; K.J. Young Modeling soot formation and burnout in a high temperature laminar diffusion flame burning under oxygen-enriched conditions, Combust. Flame, Volume 101 (1995), pp. 491-500

[13] C.W. Lautenberger; J.L. de Ris; N.A. Dembsey; J.R. Barnett; H.R. Baum A simplified model for soot formation and oxidation in CFD simulation of non-premixed hydrocarbon flames, Fire Saf. J., Volume 40 (2005), pp. 141-176

[14] T. Beji, J.P. Zhang, W. Yao, M. Delichatsios, Validation of a novel soot model in laminar diffusion flames: fuel, flow rate and thermophoretic effects, in: The Combustion Institute (Ed.), Sixth Mediterranean Combustion Symposium, 2009.

[15] T. Beji; J.P. Zhang; W. Yao; M. Delichatsios A novel soot model for fires: validation in a laminar non-premixed flame, Combust. Flame, Volume 158 (2010) no. 2, pp. 281-290

[16] M.D. Smooke; I.K. Puri; K. Seshadri A comparison between numerical calculations and experimental measurements of the structure of a counterflow diffusion flame burning diluted methane in diluted air, Proc. Combust. Inst., Volume 21 (1986), pp. 1783-1792

[17] F. Liu; H. Guo; G.J. Smallwood; Ö.L. Gülder Effects of gas and soot radiation on soot formation in a coflow laminar ethylene diffusion flames, J. Quant. Spectrosc. Radiat. Transfer, Volume 73 (2002), pp. 409-421

[18] F. Liu; H. Guo; G.J. Smallwood; M. El Hafi Effects of gas and soot radiation on soot formation in counterflow ethylene diffusion flames, J. Quant. Spectrosc. Radiat. Transfer, Volume 84 (2004), pp. 501-511

[19] H. Guo; F. Liu; G.J. Smallwood Soot and NO formation in counterflow ethylene/air/nitrogen diffusion flames, Combust. Theory Model., Volume 8 (2004), pp. 475-489

[20] H.T. Brocklehurst, J.B. Moss, C.D. Hurley, C.H. Priddin, Soot and radiation modeling in gas turbine combustion chambers, in: RTO AVT Symposium on “Gas Turbine Engine Combustion, Emissions and Alternative Fuels”, 1998.

[21] A. Kazakov; M. Frenklach; H. Wang Detailed modeling of soot formation in laminar premixed ethylene flames at a pressure of 10 bar, Combust. Flame, Volume 100 (1995), pp. 111-120

[22] D.G. Goodwin Cantera C++ users guide, 2002 http://sourceforge.net/projects/cantera

[23] I. Hernández, Soot modeling and large-eddy simulations of thermo-acoustic instabilities, PhD thesis, INP, Toulouse, 2011.

[24] J. Amaya; O. Cabrit; D. Poitou; B. Cuenot; M. El Hafi Unsteady coupling of Navier–Stokes and radiative heat transfer solvers applied to an anisothermal multicomponent turbulent channel flow, J. Quant. Spectrosc. Radiat. Transfer, Volume 111 ( January 2010 ) no. 2, pp. 295-301

[25] D. Poitou; M. El Hafi; B. Cuenot Analysis of radiation modeling for turbulent combustion: development of a methodology to couple turbulent combustion and radiative heat transfer in LES, J. Heat Transfer, Volume 133 (2011) no. 6, p. 062701 (10 pp)

[26] D. Poitou; J. Amaya; M. El Hafi; B. Cuenot Analysis of the interaction between turbulent combustion and thermal radiation using unsteady coupled les/dom simulations, Combust. Flame, Volume 159 (2012) no. 4, pp. 1605-1618

[27] V. Goutière; A. Charette; L. Kiss Comparative performance of non-gray gas modeling techniques, Numer. Heat Transf., B Fundam., Volume 41 (2002), pp. 361-381

[28] U. Vandsburger; I.M. Kennedy; I. Glassman Sooting counterflow diffusion flames with varying oxygen index, Combust. Sci. Technol., Volume 39 (1984), pp. 263-285

[29] C.P. Fenimore; G.W. Jones Oxidation of soot by hydroxyl radicals, J. Phys. Chem., Volume 71 (1967), pp. 593-597

[30] O.A. Ezekoye; Z. Zhang Soot oxidation and agglomeration modeling in a microgravity diffusion flame, Combust. Flame, Volume 110 (1997), pp. 127-139

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Soot prediction by Large-Eddy Simulation of complex geometry combustion chambers

Guillaume Lecocq; Ignacio Hernández; Damien Poitou; ...

C. R. Méca (2013)


Soot and radiation modeling in laminar ethylene flames with tabulated detailed chemistry

Luc-Henry Dorey; Nicolas Bertier; Lionel Tessé; ...

C. R. Méca (2011)


Electric sampling of soot particles in spreading non-premixed flames: methodology and influence of gravity

Yutao Li; Antoine Bordino; Augustin Guibaud; ...

C. R. Méca (2023)