Comptes Rendus
Combustion, flow and spray dynamics for aerospace propulsion
Computations of soot formation in ethylene/air counterflow diffusion flames and its interaction with radiation
Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 238-246.

A methodology is presented which allows to predict soot levels produced in simple, one-dimensional laminar flames. The method is applied to the calculation of a set of well documented ethylene/air counterflow diffusion flames, using a detailed chemical mechanism (Davis et al., 1999 [1]) and a semi-empirical, two-equation soot model from Leung and Lindstedt (1991) [2]. Modifications of the original soot model are made in order to retrieve the experimental measurements of Hwang and Chung (2001) [3]. To account for radiative heat losses, a second series of fully coupled gas/soot/radiation simulations of the counterflow flames is performed. This allows to assess the effect of soot and gas radiation on soot formation and on the flame structure.

Une méthodologie est proposée pour le calcul des niveaux de suies produits dans des flammes laminaires monodimensionnelles. Cette méthode est appliquée à une série de flammes de diffusion à contre-courant éthylène/air, largement référencées et documentées dans la littérature, et calculées avec un mécanisme chimique détaillé (Davis et al., 1999 [1]) et le modèle semi-empirique à deux équations de Leung et Lindstedt (1991) [2]. Le modèle de suie a été corrigé afin dʼobtenir un meilleur accord avec les mesures expérimentales de Hwang et Chung (2001) [3]. Afin de prendre en compte les pertes thermiques radiatives, une deuxième série de simulations couplées gaz/suies/rayonnement de ces flammes à contre-courant a été réalisée. Cette démarche permet dʼévaluer lʼeffet du rayonnement des suies et de la phase gazeuse sur la formation des suies et sur la structure de flamme.

Published online:
DOI: 10.1016/j.crme.2012.11.005
Keywords: Soot, Radiation, Counterflow diffusion flames
Mot clés : Suies, Rayonnement, Flammes de diffusion à contre-courant

Ignacio Hernández 1; Guillaume Lecocq 1; Damien Poitou 1; Eléonore Riber 1; Bénédicte Cuenot 1

1 CERFACS, 42, avenue Gaspard-Coriolis, 31057 Toulouse, France
@article{CRMECA_2013__341_1-2_238_0,
     author = {Ignacio Hern\'andez and Guillaume Lecocq and Damien Poitou and El\'eonore Riber and B\'en\'edicte Cuenot},
     title = {Computations of soot formation in ethylene/air counterflow diffusion flames and its interaction with radiation},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {238--246},
     publisher = {Elsevier},
     volume = {341},
     number = {1-2},
     year = {2013},
     doi = {10.1016/j.crme.2012.11.005},
     language = {en},
}
TY  - JOUR
AU  - Ignacio Hernández
AU  - Guillaume Lecocq
AU  - Damien Poitou
AU  - Eléonore Riber
AU  - Bénédicte Cuenot
TI  - Computations of soot formation in ethylene/air counterflow diffusion flames and its interaction with radiation
JO  - Comptes Rendus. Mécanique
PY  - 2013
SP  - 238
EP  - 246
VL  - 341
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crme.2012.11.005
LA  - en
ID  - CRMECA_2013__341_1-2_238_0
ER  - 
%0 Journal Article
%A Ignacio Hernández
%A Guillaume Lecocq
%A Damien Poitou
%A Eléonore Riber
%A Bénédicte Cuenot
%T Computations of soot formation in ethylene/air counterflow diffusion flames and its interaction with radiation
%J Comptes Rendus. Mécanique
%D 2013
%P 238-246
%V 341
%N 1-2
%I Elsevier
%R 10.1016/j.crme.2012.11.005
%G en
%F CRMECA_2013__341_1-2_238_0
Ignacio Hernández; Guillaume Lecocq; Damien Poitou; Eléonore Riber; Bénédicte Cuenot. Computations of soot formation in ethylene/air counterflow diffusion flames and its interaction with radiation. Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 238-246. doi : 10.1016/j.crme.2012.11.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.11.005/

[1] S.G. Davis; C.K. Law; H. Wang Propene pyrolysis and oxidation kinetics in a flow reactor and laminar flames, Combust. Flame, Volume 119 (1999), pp. 375-399

[2] K.M. Leung; R.P. Lindstedt A simplified reaction mechanism for soot formation in nonpremixed flames, Combust. Flame, Volume 87 (1991), pp. 289-305

[3] J.Y. Hwang; S.H. Chung Growth of soot particles in counterflow diffusion flames of ethylene, Combust. Flame, Volume 125 (2001), pp. 752-762

[4] G. Blanquart; P. Pepiot-Desjardins; H. Pitsch Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors, Combust. Flame, Volume 156 (2008), pp. 588-607

[5] M.E. Mueller; G. Blanquart; H. Pitsch Hybrid method of moments for modeling soot formation and growth, Combust. Flame, Volume 156 ( June 2009 ) no. 6, pp. 1143-1155

[6] B. Kärcher; O. Möhler; P.J. DeMott; S. Pechtl; F. Yu Insights into the role of soot aerosols in cirrus clouds formation, Atmos. Chem. Phys., Volume 7 (2007), pp. 4203-4227

[7] H. Jung; B. Guo; C. Anastasio; I.M. Kennedy Quantitative measurements of the generation of hydroxyl radicals by soot particles in a surrogate lung fluid, Atmos. Environ., Volume 40 (2006) no. 6, pp. 1043-1052

[8] R. Viskanta; M.P. Mengük Radiation heat transfer in combustion systems, Prog. Energy Combust. Sci., Volume 13 (1987), pp. 97-160

[9] Ian M. Kennedy Models of soot formation and oxidation, Prog. Energy Combust. Sci., Volume 23 (1997), pp. 95-132

[10] N.J. Brown; K.L. Revzan; M. Frenklach Detailed kinetic modeling of soot formation in ethylene/air mixtures reacting in a perfectly stirred reactor, Symp. (Int.) Combust., Volume 27 (1998) no. 1, pp. 1573-1580

[11] B.S. Haynes; G.Gg. Wagner Soot formation, Prog. Energy Combust. Sci., Volume 7 (1981), pp. 229-237

[12] J.B. Moss; C.D. Stewart; K.J. Young Modeling soot formation and burnout in a high temperature laminar diffusion flame burning under oxygen-enriched conditions, Combust. Flame, Volume 101 (1995), pp. 491-500

[13] C.W. Lautenberger; J.L. de Ris; N.A. Dembsey; J.R. Barnett; H.R. Baum A simplified model for soot formation and oxidation in CFD simulation of non-premixed hydrocarbon flames, Fire Saf. J., Volume 40 (2005), pp. 141-176

[14] T. Beji, J.P. Zhang, W. Yao, M. Delichatsios, Validation of a novel soot model in laminar diffusion flames: fuel, flow rate and thermophoretic effects, in: The Combustion Institute (Ed.), Sixth Mediterranean Combustion Symposium, 2009.

[15] T. Beji; J.P. Zhang; W. Yao; M. Delichatsios A novel soot model for fires: validation in a laminar non-premixed flame, Combust. Flame, Volume 158 (2010) no. 2, pp. 281-290

[16] M.D. Smooke; I.K. Puri; K. Seshadri A comparison between numerical calculations and experimental measurements of the structure of a counterflow diffusion flame burning diluted methane in diluted air, Proc. Combust. Inst., Volume 21 (1986), pp. 1783-1792

[17] F. Liu; H. Guo; G.J. Smallwood; Ö.L. Gülder Effects of gas and soot radiation on soot formation in a coflow laminar ethylene diffusion flames, J. Quant. Spectrosc. Radiat. Transfer, Volume 73 (2002), pp. 409-421

[18] F. Liu; H. Guo; G.J. Smallwood; M. El Hafi Effects of gas and soot radiation on soot formation in counterflow ethylene diffusion flames, J. Quant. Spectrosc. Radiat. Transfer, Volume 84 (2004), pp. 501-511

[19] H. Guo; F. Liu; G.J. Smallwood Soot and NO formation in counterflow ethylene/air/nitrogen diffusion flames, Combust. Theory Model., Volume 8 (2004), pp. 475-489

[20] H.T. Brocklehurst, J.B. Moss, C.D. Hurley, C.H. Priddin, Soot and radiation modeling in gas turbine combustion chambers, in: RTO AVT Symposium on “Gas Turbine Engine Combustion, Emissions and Alternative Fuels”, 1998.

[21] A. Kazakov; M. Frenklach; H. Wang Detailed modeling of soot formation in laminar premixed ethylene flames at a pressure of 10 bar, Combust. Flame, Volume 100 (1995), pp. 111-120

[22] D.G. Goodwin Cantera C++ users guide, 2002 http://sourceforge.net/projects/cantera

[23] I. Hernández, Soot modeling and large-eddy simulations of thermo-acoustic instabilities, PhD thesis, INP, Toulouse, 2011.

[24] J. Amaya; O. Cabrit; D. Poitou; B. Cuenot; M. El Hafi Unsteady coupling of Navier–Stokes and radiative heat transfer solvers applied to an anisothermal multicomponent turbulent channel flow, J. Quant. Spectrosc. Radiat. Transfer, Volume 111 ( January 2010 ) no. 2, pp. 295-301

[25] D. Poitou; M. El Hafi; B. Cuenot Analysis of radiation modeling for turbulent combustion: development of a methodology to couple turbulent combustion and radiative heat transfer in LES, J. Heat Transfer, Volume 133 (2011) no. 6, p. 062701 (10 pp)

[26] D. Poitou; J. Amaya; M. El Hafi; B. Cuenot Analysis of the interaction between turbulent combustion and thermal radiation using unsteady coupled les/dom simulations, Combust. Flame, Volume 159 (2012) no. 4, pp. 1605-1618

[27] V. Goutière; A. Charette; L. Kiss Comparative performance of non-gray gas modeling techniques, Numer. Heat Transf., B Fundam., Volume 41 (2002), pp. 361-381

[28] U. Vandsburger; I.M. Kennedy; I. Glassman Sooting counterflow diffusion flames with varying oxygen index, Combust. Sci. Technol., Volume 39 (1984), pp. 263-285

[29] C.P. Fenimore; G.W. Jones Oxidation of soot by hydroxyl radicals, J. Phys. Chem., Volume 71 (1967), pp. 593-597

[30] O.A. Ezekoye; Z. Zhang Soot oxidation and agglomeration modeling in a microgravity diffusion flame, Combust. Flame, Volume 110 (1997), pp. 127-139

Cited by Sources:

Comments - Policy