Comptes Rendus
Combustion, flow and spray dynamics for aerospace propulsion
Study of a liquid–gas mixing layer: Shear instability and size of produced drops
[Étude dʼune couche de mélange liquide gaz : Instabilité de cisaillement et taille de gouttes produites]
Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 26-34.

Nous étudions expérimentalement lʼatomisation dʼune nappe liquide par un courant parallèle gaz, afin de comprendre les conditions de déstabilisation de la nappe liquide et les conditions de formation de gouttes. Nous étudions en particulier les régimes de faible M (rapport de pression dynamique gaz/liquide), afin de tester les lois dʼéchelle mises en évidence lors dʼétudes précédentes et validées sur un régime à grand M (M=16).

Lʼanalyse de stabilité inviscide du système est menée avec un nouveau profil de vitesse prenant en compte le sillage de la plaque séparatrice (vitesse nulle au niveau de la plaque de séparation) : lʼinfluence de la vitesse de phase liquide sur la fréquence de lʼinstabilité de cisaillement est significativement plus forte pour ce type de profil de vitesse que pour les profils classiques. Une étude asymptotique de la relation de dispersion permet de trouver une nouvelle loi dʼéchelle reliant le nombre dʼonde du mode le plus instable à la vitesse gaz Ug, avec un correctif en M. Les mesures de fréquence réalisées par une méthode spectrale montrent un bon accord avec cette loi dʼéchelle corrigée.

Connaissant les mécanismes en amont nous nous intéressons également aux distributions de taille de gouttes en aval, mesurées par sonde optique. La diminution du flux numérique de goutte et le changement des plages de vitesse des fluides à faible M rendent les mesures plus complexes. Les résultats sur les cordes moyennes mesurées sont cohérents avec les études précédentes.

We study experimentally the atomization of a thick liquid film by a parallel gas flow, in order to understand the conditions of destabilization of the liquid film and the conditions of drop creation. We study in particular the regimes at low M (ratio of gas/liquid dynamic pressures), to test the scaling law proposed and validated in previous studies at large M (M=16).

The spatial inviscid stability analysis of the system is carried out with a new velocity profile taking into account the wake of the splitter plate (zero speed at the level of the splitter plate): the influence of liquid velocity on the shear instability frequency turns out to be significantly stronger for this type of velocity profile than for continuous profile.

An asymptotic study of the dispersion relation leads to a new scaling law giving the wavenumber of the shear instability as a function of gas velocity Ug, with a corrective term in M. Frequency measurements carried out by a spectral method show a good agreement with this corrected law.

We investigate by way of optical probe measurements the size distribution of produced drops downstream. The difficulty of these measurements live in the decrease of the number density flux of drops at low M. Results obtained for the mean chord are consistent with previous studies. Diameter distributions are obtained from chord distributions with a numerical conversion procedure.

Publié le :
DOI : 10.1016/j.crme.2012.10.009
Keywords: Combustion, Liquid–gas mixing layer, Stability analysis, Droplet
Mot clés : Combustion, Couche de mélange liquide gaz, Analyse de stabilité, Distributions de taille de gouttes

Sylvain Marty 1 ; Jean-Philippe Matas 1 ; Alain Cartellier 1

1 Laboratoire des écoulements géophysiques et industriels (LEGI), CNRS – Université de Grenoble, BP53 38041, Grenoble cedex 9, France
@article{CRMECA_2013__341_1-2_26_0,
     author = {Sylvain Marty and Jean-Philippe Matas and Alain Cartellier},
     title = {Study of a liquid{\textendash}gas mixing layer: {Shear} instability and size of produced drops},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {26--34},
     publisher = {Elsevier},
     volume = {341},
     number = {1-2},
     year = {2013},
     doi = {10.1016/j.crme.2012.10.009},
     language = {en},
}
TY  - JOUR
AU  - Sylvain Marty
AU  - Jean-Philippe Matas
AU  - Alain Cartellier
TI  - Study of a liquid–gas mixing layer: Shear instability and size of produced drops
JO  - Comptes Rendus. Mécanique
PY  - 2013
SP  - 26
EP  - 34
VL  - 341
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crme.2012.10.009
LA  - en
ID  - CRMECA_2013__341_1-2_26_0
ER  - 
%0 Journal Article
%A Sylvain Marty
%A Jean-Philippe Matas
%A Alain Cartellier
%T Study of a liquid–gas mixing layer: Shear instability and size of produced drops
%J Comptes Rendus. Mécanique
%D 2013
%P 26-34
%V 341
%N 1-2
%I Elsevier
%R 10.1016/j.crme.2012.10.009
%G en
%F CRMECA_2013__341_1-2_26_0
Sylvain Marty; Jean-Philippe Matas; Alain Cartellier. Study of a liquid–gas mixing layer: Shear instability and size of produced drops. Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 26-34. doi : 10.1016/j.crme.2012.10.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.10.009/

[1] M. Lightfoot Fundamental classification of atomization processes, At. Sprays, Volume 19 (2009) no. 11, pp. 1065-1104

[2] Lord Rayleigh On the stability, or instability, of certain fluid motions, Proc. Lond. Math. Soc., Volume 11 (1879), p. 57

[3] S. Chandrasekhar Hydrodynamic and Hydromagnetic Stability, Dover Publication, 1981 (Chapter X)

[4] L. Raynal, E. Villermaux, J. Lasheras, E.J. Hopfinger, Primary instability in liquid gas shear layers, in: 11th Symp. on Turbulent Shear Flows, vol. 3, 1997, pp. 27.1–27.5.

[5] P. Marmottant; E. Villermaux On spray formation, J. Fluid Mech., Volume 498 (2004), p. 73

[6] M. Hong, Atomisation et mélange dans les jets coaxiaux liquide–gaz, Thèse INPG, LEGI, 2003.

[7] P.E. Dimotakis Two-dimensional shear-layer entrainment, AIAA J., Volume 24 (1986), pp. 1791-1796

[8] F. Ben Rayana, Contribution à lʼétude des instabilités interfaciales liquide–gaz en atomisation assistée et tailles de gouttes, Thèse INPG, LEGI, 2007.

[9] J.P. Matas; S. Marty; A. Cartellier Experimental and analytical study of a shear instability of a gaz–liquid mixing layer, Phys. Fluids, Volume 23 (2011)

[10] A. Cartellier, F. Ben Rayana, Dispersed phase measurements in sprays using optical probes, in: 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, Pisa, 22–24 September 2004.

[11] M. Hong; A. Cartellier; E. Hopfinger Characterization of phase detection optical probes for the measurement of the dispersed phase parameters in sprays, Int. J. Multiph. Flow (2004)

[12] M. Hong, A. Cartellier, E. Hopfinger, Atomisation and mixing in coaxial injection, in: 4th Int. Conference on Launcher Technologie “Space Launcher Liquid Propulsion”, Liège, 3–6 December 2002.

[13] C.M. Varga; J.C. Lasheras; E. Hopfinger Initial breakup of a small-diameter liquid jet by a high-speed gas stream, J. Fluid Mech., Volume 497 (2003), pp. 405-434

[14] F. Ben Rayana, A. Cartellier, E. Hopfinger, Assisted atomization of a liquid layer: investigation of the parameters affecting the mean drop size prediction, ICLASS, Kyoto, August 27–September 1, 2006.

[15] W. Liu; N.N. Clark Relationships between distributions of chord lengths and distributions of bubble sizes including their statistical parameter, Int. J. Multiph. Flow, Volume 21 (1995) no. 6, pp. 1073-1089

[16] A.K.M.F. Hussain; M.F. Zedan Effects of the initial condition on the axisymmetric free sheer layer: effects on the initial momentum thickness, Phys. Fluids, Volume 21 (1978) no. 7, pp. 1100-1112

[17] M. Descamps, J.-P. Matas, A. Cartellier, Gas–liquid atomisation: gas phase characteristics by PIV measurements and spatial evolution of the spray, in: 2nd Colloque INCA, 23–24 October 2008.

Cité par Sources :

Commentaires - Politique