Comptes Rendus
Combustion, flow and spray dynamics for aerospace propulsion
A comparison of the damping properties of perforated plates backed by a cavity operating at low and high Strouhal numbers
Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 161-170.

Liners backed by a resonant cavity and traversed by a bias flow are widely used for acoustic damping in aeronautical engines. Their design relies on a relatively complex optimization procedure with a large number of parameters to examine. It is shown in this study how to reduce this number by maximizing absorption in two limit regimes where the choice of the optimal bias flow velocity and size of the back cavity can be decoupled. These developments apply for perforated plates of different porosity and thickness in the absence of grazing flow. In these regimes, the optimal bias flow velocity is only controlled by the plate porosity while the size of the back cavity fixes the peak absorption frequency. The first absorption regime reached at high Strouhal numbers is characterized by a Helmholtz resonance (He1) and a narrow frequency absorption bandwidth. The Mach number associated to the optimal bias flow velocity is then given by Mc=(2/π)σ, where σ is the plate porosity. This regime minimizes the size of the resonant back cavity, but the absorption bandwidth narrows also with the Strouhal number. The second absorption regime reached at low Strouhal numbers operates with a quarter-wave resonator (Heπ/2) and a bias flow velocity fixed by Mc=σ/2. This regime offers a wide absorption bandwidth around the peak absorption frequency well suited for low frequency dampers when the bias flow velocity may vary within the system. Theoretical expressions derived in this study are validated against experimental data in the two regimes identified. They may be used to ease the design of robust dampers to hinder self-sustained thermo-acoustic instabilities when the instability frequency varies.

Les plaques perforées couplées à une cavité résonante et traversées par un écoulement axial sont souvent utilisées pour augmenter lʼamortissement acoustique dans les moteurs aéronautiques. Leur conception repose sur une procédure dʼoptimisation complexe, avec un jeu important de paramètres à examiner. Dans cette étude nous montrons comment réduire ce nombre de paramètres en maximisant lʼabsorption dans deux régimes asymptotiques où les choix de la vitesse optimale dans les trous et de la taille de la cavité résonante peuvent être découplés. Des expressions analytiques utiles lors de la conception sont indiquées pour ces deux régimes de fonctionnement caractérisés par des bandes dʼabsorption étroite à fort Strouhal et large à faible Strouhal. Ces développements sont valides pour des plaques perforées de différentes porosités et épaisseurs en absence dʼécoulement rasant. Ils peuvent contribuer à améliorer la conception de systèmes robustes dʼatténuation dʼinstabilités de combustion lorsque la fréquence de lʼinstabilité varie.

Published online:
DOI: 10.1016/j.crme.2012.10.016
Keywords: Robust control, Perforated plate, Acoustic damping, Thermo-acoustic instabilities, Sound absorption
Keywords: Contrôle robuste, Plaque perforée, Amortissement acoustique, Instabilités de combustion, Absorption sonore

Alessandro Scarpato 1, 2; Sébastien Ducruix 1, 2; Thierry Schuller 1, 2

1 CNRS, UPR 288, Laboratoire dʼÉnergétique Moléculaire et Macroscopique, Combustion (EM2C), 92295 Châtenay-Malabry, France
2 École Centrale Paris, 92295 Châtenay-Malabry, France
@article{CRMECA_2013__341_1-2_161_0,
     author = {Alessandro Scarpato and S\'ebastien Ducruix and Thierry Schuller},
     title = {A comparison of the damping properties of perforated plates backed by a cavity operating at low and high {Strouhal} numbers},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {161--170},
     publisher = {Elsevier},
     volume = {341},
     number = {1-2},
     year = {2013},
     doi = {10.1016/j.crme.2012.10.016},
     language = {en},
}
TY  - JOUR
AU  - Alessandro Scarpato
AU  - Sébastien Ducruix
AU  - Thierry Schuller
TI  - A comparison of the damping properties of perforated plates backed by a cavity operating at low and high Strouhal numbers
JO  - Comptes Rendus. Mécanique
PY  - 2013
SP  - 161
EP  - 170
VL  - 341
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crme.2012.10.016
LA  - en
ID  - CRMECA_2013__341_1-2_161_0
ER  - 
%0 Journal Article
%A Alessandro Scarpato
%A Sébastien Ducruix
%A Thierry Schuller
%T A comparison of the damping properties of perforated plates backed by a cavity operating at low and high Strouhal numbers
%J Comptes Rendus. Mécanique
%D 2013
%P 161-170
%V 341
%N 1-2
%I Elsevier
%R 10.1016/j.crme.2012.10.016
%G en
%F CRMECA_2013__341_1-2_161_0
Alessandro Scarpato; Sébastien Ducruix; Thierry Schuller. A comparison of the damping properties of perforated plates backed by a cavity operating at low and high Strouhal numbers. Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 161-170. doi : 10.1016/j.crme.2012.10.016. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.10.016/

[1] I.J. Hughes; A.P. Dowling The absorption of sound by perforated linings, Journal of Fluid Mechanics, Volume 218 (1990), pp. 299-335

[2] N. Tran; S. Ducruix; T. Schuller Damping combustion instabilities with perforates at the premixer inlet of a swirled burner, Proceedings of the Combustion Institute, Volume 32 (2009), pp. 2917-2924

[3] D. Lörstad, J. Pettersson, A. Lindholm, Emission reduction and cooling improvements due to the introduction of passive acoustic damping in an existing SGT-800 combustor, in: Proceedings of ASME Turbo Expo 2009, GT2009-59313.

[4] G.A. Richards; D.L. Straub; E.H. Robey Passive control of combustion dynamics in stationary gas turbines, Journal of Propulsion and Power, Volume 19 (2003), pp. 795-810

[5] U. Ingard; H. Ising Acoustic nonlinearity of an orifice, Journal of the Acoustical Society of America, Volume 41 (1967), pp. 1582-1583

[6] A. Cummings; W. Eversman High amplitude acoustic transmission through duct terminations: Theory, Journal of Sound and Vibration, Volume 91 (1983), pp. 503-518

[7] A. Cummings Transient and multiple frequency sound transmission through perforated plates at high amplitude, Journal of the Acoustical Society of America, Volume 79 (1986), pp. 942-951

[8] A. Cummings Acoustic nonlinearities and power losses at orifices, AIAA Journal, Volume 22 (1984), pp. 786-792

[9] T.H. Melling The acoustic impedance of perforates at medium and high sound pressure levels, Journal of Sound and Vibration, Volume 29 (1973), pp. 1-65

[10] M.S. Howe On the theory of unsteady high Reynolds number flow through a circular aperture, Proceedings of the Royal Society, Volume 366 (1979), pp. 205-223

[11] I.D.J. Dupère; A.P. Dowling The absorption of sound near abrupt axisymmetric area expansions, Journal of Sound and Vibration, Volume 239 (2001), pp. 709-730

[12] X. Jing; X. Sun Effect of plate thickness on impedance of perforated plates with bias flow, AIAA Journal, Volume 38 (2000), pp. 1573-1578

[13] K.S. Peat; R. Sugimoto; J.L. Horner The effects of thickness on the impedance of a rectangular aperture in the presence of a grazing flow, Journal of Sound and Vibration, Volume 292 (2006), pp. 610-625

[14] S.M. Grace; K.P. Horan; M.S. Howe The influence of shape on the Rayleigh conductivity of a wall aperture in the presence of grazing flow, Journal of Fluids and Structures, Volume 12 (1998), pp. 335-351

[15] S.-H. Lee; J.-G. Ih; K.S. Peat A model of acoustic impedance of perforated plates with bias flow considering the interaction effect, Journal of Sound and Vibration, Volume 303 (2007), pp. 741-752

[16] R. Tayong; T. Dupont; P. Leclaire Experimental investigation of holes interaction effect on the sound absorption coefficient of micro-perforated panels under high and medium sound levels, Applied Acoustics, Volume 72 (2011), pp. 777-784

[17] J. Dassé, S. Mendez, F. Nicoud, Large-eddy simulation of the acoustic response of a perforated plate, in: 14th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2008-3007.

[18] M.S. Howe Acoustics of Fluid–Structure Interactions, Cambridge University Press, Cambridge, 1998

[19] V. Bellucci; P. Flohr; C. Paschereit Numerical and experimental study of acoustic damping generated by perforated screens, AIAA Journal, Volume 42 (2004), pp. 1543-1549

[20] A. Scarpato, S. Ducruix, T. Schuller, A LES based sound absorption analysis of high-amplitude waves through an orifice with bias flow, in: Proceedings of ASME Turbo Expo 2011, GT2011-45639, 2011.

[21] J. Rupp, J. Carrotte, M. Macquisten, The use of perforated damping liners in aero gas turbine combustion systems, in: Proceedings of ASME Turbo Expo 2011, GT2011-45488.

[22] A. Scarpato; N. Tran; S. Ducruix; T. Schuller Modeling the damping properties of perforated screens traversed by a bias flow and backed by a cavity at low Strouhal number, Journal of Sound and Vibration, Volume 331 (2012), pp. 276-290

[23] C.L. Morfey Acoustic energy in non-uniform flows, Journal of Sound and Vibration, Volume 14 (1971), pp. 159-170

[24] D.W. Bechert Sound absorption caused by vorticity shedding, demonstrated with a jet flow, Journal of Sound and Vibration, Volume 70 (1980), pp. 389-405

[25] J.W.S. Rayleigh The Theory of Sound, MacMillan, London, 1896

[26] A.P. Dowling; I.J. Hughes Sound absorption by a screen with a regular array of slits, Journal of Sound and Vibration, Volume 156 (1992), pp. 387-405

[27] S. Barbosa; P. Scouflaire; S. Ducruix Time resolved flowfield, flame structure and acoustic characterization of a staged multi-injection burner, Proceedings of the Combustion Institute, Volume 32 (2009), pp. 2965-2972

[28] F. Boudy; D. Durox; T. Schuller; S. Candel Nonlinear mode triggering in a multiple flame combustor, Proceedings of the Combustion Institute, Volume 33 (2011), pp. 1121-1128

Cited by Sources:

Comments - Policy