Comptes Rendus
Combustion, flow and spray dynamics for aerospace propulsion
Impact of flame base dynamics on the non-linear frequency response of conical flames
Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 171-180.

The response of laminar premixed conical flames to velocity disturbances is considered theoretically and experimentally with a focus on the impact of the flame base dynamics on the non-linear behavior of the Flame Transfer Function (FTF). Unsteady heat transfer between the flame base and the burner lip is considered to model the flame base response. Predictions for the flame base response Ξ(ω) and flame transfer function F(ω) are compared to measurements over a large range of frequencies. The non-linear behavior of the FTF phase is shown to result from a competition between velocity disturbances contributing to a regular increase of the phase lag with frequency and flame base oscillations leading to a saturation of the phase lag at high frequencies. Increasing the forcing level leads to an early saturation of the phase lag of the FTF at lower frequencies. This analysis demonstrates the important role of flame foot oscillations controlling the saturation of the FTF phase lag.

La réponse dʼune flamme conique prémélangée soumise à des perturbations de vitesse est étudiée théoriquement et expérimentalement, en se concentrant sur lʼimpact de la dynamique du point dʼaccrochage sur le comportement non-linéaire de la Fonction de Transfert de Flamme (FTF). Cette réponse est modélisée en considérant le transfert de chaleur instationnaire entre le brûleur et la base de la flamme. Les prévisions concernant la réponse du point dʼaccrochage Ξ(ω) ainsi que la Fonction de Transfert de Flamme F(ω) sont comparées à des mesures pour différentes fréquences. On montre notamment que le comportement non-linéaire de la phase de la FTF résulte dʼune compétition entre les effets dus aux perturbations de vitesse, induisant une augmentation regulière de la phase de la FTF, et du point dʼaccrochage de la flamme, résultant en une saturation de la phase de la FTF à hautes fréquences. Cette analyse montre ainsi le rôle important des oscillations de la base de la flamme, contrôlant la saturation de la phase de la FTF.

Published online:
DOI: 10.1016/j.crme.2012.11.004
Keywords: Combustion dynamics, Flame transfer function, Flame base motion, Unsteady heat transfer
Mot clés : Dynamique de combustion, Fonction de transfert de flamme, Mouvement de la base de la flamme, Transfert de chaleur instationnaire

Alexis Cuquel 1, 2; Daniel Durox 1, 2; Thierry Schuller 1, 2

1 CNRS, UPR 288, Laboratoire dʼEnergétique Moléculaire et Macroscopique, Combustion (EM2C), 92290 Châtenay-Malabry, France
2 École Centrale Paris, 92290 Châtenay-Malabry, France
@article{CRMECA_2013__341_1-2_171_0,
     author = {Alexis Cuquel and Daniel Durox and Thierry Schuller},
     title = {Impact of flame base dynamics on the non-linear frequency response of conical flames},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {171--180},
     publisher = {Elsevier},
     volume = {341},
     number = {1-2},
     year = {2013},
     doi = {10.1016/j.crme.2012.11.004},
     language = {en},
}
TY  - JOUR
AU  - Alexis Cuquel
AU  - Daniel Durox
AU  - Thierry Schuller
TI  - Impact of flame base dynamics on the non-linear frequency response of conical flames
JO  - Comptes Rendus. Mécanique
PY  - 2013
SP  - 171
EP  - 180
VL  - 341
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crme.2012.11.004
LA  - en
ID  - CRMECA_2013__341_1-2_171_0
ER  - 
%0 Journal Article
%A Alexis Cuquel
%A Daniel Durox
%A Thierry Schuller
%T Impact of flame base dynamics on the non-linear frequency response of conical flames
%J Comptes Rendus. Mécanique
%D 2013
%P 171-180
%V 341
%N 1-2
%I Elsevier
%R 10.1016/j.crme.2012.11.004
%G en
%F CRMECA_2013__341_1-2_171_0
Alexis Cuquel; Daniel Durox; Thierry Schuller. Impact of flame base dynamics on the non-linear frequency response of conical flames. Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 171-180. doi : 10.1016/j.crme.2012.11.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.11.004/

[1] S. Ducruix; T. Schuller; D. Durox; S. Candel Combustion dynamics and instabilities: Elementary coupling and driving mechanisms, Journal of Propulsion and Power, Volume 19 (2003), pp. 722-734

[2] D. Durox; T. Schuller; N. Noiray; S. Candel Experimental analysis of nonlinear flame transfer functions for different flame geometries, Proceedings of the Combustion Institute, Volume 32 (2009) no. 1, pp. 1391-1398

[3] N. Noiray; D. Durox; T. Schuller; S. Candel A unified framework for nonlinear combustion instability analysis based on the flame describing function, Journal of Fluid Mechanics, Volume 615 (2008) no. 1, pp. 139-167

[4] M. Fleifil; A.M. Annaswamy; Z.A. Ghoneim; A.F. Ghoniem Response of a laminar premixed flame to flow oscillations: A kinematic model and thermoacoustic instability results, Combustion and Flame, Volume 106 (1996) no. 4, pp. 487-510

[5] S. Ducruix; D. Durox; S. Candel Theoretical and experimental determinations of the transfer function of a laminar premixed flame, Proceedings of the Combustion Institute, Volume 28 (2000) no. 1, pp. 765-773

[6] T. Schuller; D. Durox; S. Candel A unified model for the prediction of laminar flame transfer functions: Comparisons between conical and V-flame dynamics, Combustion and Flame, Volume 134 (2003) no. 1–2, pp. 21-34

[7] T. Lieuwen Nonlinear kinematic response of premixed flames to harmonic velocity disturbances, Proceedings of the Combustion Institute, Volume 30 (2005) no. 2, pp. 1725-1732

[8] L. Boyer; J. Quinard On the dynamics of anchored flames, Combustion and Flame, Volume 82 (1990) no. 1, pp. 51-65

[9] F. Baillot; D. Durox; R. Prudʼhomme Experimental and theoretical study of a premixed vibrating flame, Combustion and Flame, Volume 88 (1992) no. 2, pp. 149-152 (IN1, 153–168)

[10] A.L. Birbaud; D. Durox; S. Candel Upstream flow dynamics of a laminar premixed conical flame submitted to acoustic modulations, Combustion and Flame, Volume 146 (2006) no. 3, pp. 541-552

[11] V.N. Kornilov; K.R.A.M. Schreel; L.P.H. de Goey Experimental assessment of the acoustic response of laminar premixed Bunsen flames, Proceedings of the Combustion Institute, Volume 31 (2007) no. 1, pp. 1239-1246

[12] N. Karimi; M.J. Brear; S.-H. Jin; J.P. Monty Linear and non-linear forced response of a conical, ducted, laminar premixed flame, Combustion and Flame, Volume 156 (2009) no. 11, pp. 2201-2212

[13] T. Schuller; S. Ducruix; D. Durox; S. Candel Modeling tools for the prediction of premixed flame transfer functions, Proceedings of the Combustion Institute, Volume 29 (2002) no. 1, pp. 107-113

[14] P. Auzillon; B. Fiorina; R. Vicquelin; N. Darabiha; O. Gicquel; D. Veynante Modeling chemical flame structure and combustion dynamics in LES, Proceedings of the Combustion Institute, Volume 33 (2011) no. 1, pp. 1331-1338

[15] H.Y. Wang; C.K. Law; T. Lieuwen Linear response of stretch-affected premixed flames to flow oscillations, Combustion and Flame, Volume 156 (2009) no. 4, pp. 889-895

[16] H.M. Altay; S. Park; D. Wu; D. Wee; A.M. Annaswamy; A.F. Ghoniem Modeling the dynamic response of a laminar perforated-plate stabilized flame, Proceedings of the Combustion Institute, Volume 32 (2009) no. 1, pp. 1359-1366

[17] A. Cuquel, D. Durox, T. Schuller, Theoretical and experimental determination of the flame transfer function of confined premixed flames, in: 7th Mediterranean Symposium on Combustion, 2011.

[18] A.P. Dowling A kinematic model of a ducted flame, Journal of Fluid Mechanics, Volume 394 (1999) no. 1, pp. 51-72

[19] D. Lee; T. Lieuwen Premixed flame kinematics in a longitudinal acoustic field, Journal of Propulsion and Power, Volume 19 (2003), pp. 837-846

[20] Preetham, T. Lieuwen, Nonlinear flame-flow transfer function calculations: Flow disturbance celerity effects, AIAA Paper 2004-4035, 2004.

[21] Giulio Borghesi; Fernando Biagioli; Bruno Schuermans Dynamic response of turbulent swirling flames to acoustic perturbations, Combustion Theory and Modelling, Volume 13 (2009) no. 3, pp. 487-512

[22] R. Rook; L.P.H. de Goey; L.M.T. Somers; K.R.A.M. Schreel; R. Parchen Response of burner-stabilized flat flames to acoustic perturbations, Combustion Theory and Modelling, Volume 6 (2002) no. 2, pp. 223-242

[23] R. Rook; L.P.H. de Goey The acoustic response of burner-stabilized flat flames: A two-dimensional numerical analysis, Combustion and Flame, Volume 133 (2003) no. 1–2, pp. 119-132

[24] X.J. Gu; M.Z. Haq; M. Lawes; R. Woolley Laminar burning velocity and Markstein lengths of methane/air mixtures, Combustion and Flame, Volume 121 (2000) no. 1–2, pp. 41-58

[25] I.R. Hurle; R.B. Price; T.M. Sugden; A. Thomas Sound emission from open turbulent premixed flames, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Volume 303 (1968) no. 1475, pp. 409-427

[26] Kushal S. Kedia; Ahmed F. Ghoniem Mechanisms of stabilization and blowoff of a premixed flame downstream of a heat-conducting perforated plate, Combustion and Flame, Volume 159 (2012) no. 3, pp. 1055-1069

Cited by Sources:

Comments - Policy