Comptes Rendus
Links between effective tensors for fiber-reinforced elastic composites
Comptes Rendus. Mécanique, Volume 341 (2013) no. 6, pp. 520-532.

Predicting the effective elasticity of a composite material based on the elasticity of the constituent materials is extremely difficult, even when the microstructure is known. In this paper we consider a link between effective elastic tensors of composites with the same microgeometry but different constituent materials. Information about the effective tensor of one composite can then be used to determine the other. The general theory of exact relations allows us to identify all such links in principle. Here we describe a special set of links, for which one of the composites can be chosen arbitrarily. Several applications are considered and a number of microstructure-independent relations satisfied by the effective elastic tensors is derived.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2013.01.004
Mots clés : Composite materials, Effective elasticity, Exact relations, Fiber-reinforced composites
Meredith Hegg 1

1 Harvard University, Department of Mathematics, One Oxford Street, Cambridge, MA 02138, USA
@article{CRMECA_2013__341_6_520_0,
     author = {Meredith Hegg},
     title = {Links between effective tensors for fiber-reinforced elastic composites},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {520--532},
     publisher = {Elsevier},
     volume = {341},
     number = {6},
     year = {2013},
     doi = {10.1016/j.crme.2013.01.004},
     language = {en},
}
TY  - JOUR
AU  - Meredith Hegg
TI  - Links between effective tensors for fiber-reinforced elastic composites
JO  - Comptes Rendus. Mécanique
PY  - 2013
SP  - 520
EP  - 532
VL  - 341
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crme.2013.01.004
LA  - en
ID  - CRMECA_2013__341_6_520_0
ER  - 
%0 Journal Article
%A Meredith Hegg
%T Links between effective tensors for fiber-reinforced elastic composites
%J Comptes Rendus. Mécanique
%D 2013
%P 520-532
%V 341
%N 6
%I Elsevier
%R 10.1016/j.crme.2013.01.004
%G en
%F CRMECA_2013__341_6_520_0
Meredith Hegg. Links between effective tensors for fiber-reinforced elastic composites. Comptes Rendus. Mécanique, Volume 341 (2013) no. 6, pp. 520-532. doi : 10.1016/j.crme.2013.01.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.01.004/

[1] R. Hill Elastic properties of reinforced solids: Some theoretical principles, Journal of the Mechanics and Physics of Solids, Volume 11 (1963), pp. 357-372

[2] R. Hill The elastic behaviour of a crystalline aggregate, Proceedings of the Physical Society. Section A, Volume 65 (1952), pp. 349-354

[3] G.W. Milton The Theory of Composites, Cambridge University Press, Cambridge, 2002

[4] Q.C. He Characterization of a class of polycrystals whose effective elastic bulk moduli can be exactly determined, Comptes Rendus de lʼAcademie des Sciences, Paris, Volume 331 (2003), pp. 623-629

[5] K.A. Lurie; A.V. Cherkaev G-closure of some particular sets of admissible material characteristics for the problem of bending of thin elastic plates, Journal of Optimization Theory and Applications, Volume 42 (1984), pp. 305-316

[6] K.A. Lurie; A.V. Cherkaev; A.V. Fedorov On the existence of solutions to some problems of optimal design for bars and plates, Journal of Optimization Theory and Applications, Volume 42 (1984), pp. 247-281

[7] K.A. Lurie; A.V. Cherkaev Effective characteristics of composite materials and the optimal design of structural elements (A.V. Cherkaev; R.V. Kohn, eds.), Topics in the Mathematical Modelling of Composite Materials, Birkhäuser, 1997, pp. 175-258

[8] G.A. Francfort; L. Tartar Effective behavior of a mixture of isotropic materials with identical shear moduli, Comptes Rendus de lʼAcademie des Sciences, Paris, Volume 312 (1991), pp. 301-307

[9] J.L. Cribb Shrinkage and thermal expansion of a two phase material, Nature, Volume 220 (1968), pp. 576-577

[10] B.W. Rosen; Z. Hashin Effective thermal expansion coefficients and specific heats of composite materials, International Journal of Engineering Science, Volume 8 (1970), pp. 157-173

[11] Z. Hashin Thermal expansion of polycrystalline aggregates: I. Exact analysis, Journal of the Mechanics and Physics of Solids, Volume 32 (1984), pp. 149-157

[12] K. Schulgasser Thermal expansion of polycrystalline aggregates with texture, Journal of the Mechanics and Physics of Solids, Volume 35 (1987), pp. 35-42

[13] G.J. Dvorak On some exact results in thermoplasticity of composite materials, Journal of Thermal Stresses, Volume 15 (1992), pp. 211-228

[14] G.J. Dvorak On uniform fields in heterogeneous media, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, Volume 431 (1990), pp. 89-110

[15] Y. Benveniste; G.J. Dvorak Uniform fields and universal relations in piezoelectric composites, Journal of the Mechanics and Physics of Solids, Volume 40 (1992), pp. 1295-1312

[16] Y. Benveniste Exact results in the micromechanics of fibrous piezoelectric composites exhibiting pyroelectricity, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, Volume 441 (1993), p. 59

[17] Y. Benveniste Correspondence relations among equivalent classes of heterogeneous piezoelectric solids under anti-plane mechanical and in-plane electrical fields, Journal of the Mechanics and Physics of Solids, Volume 43 (1995), pp. 553-571

[18] Y. Benveniste; G.J. Dvorak On a correspondence between mechanical and thermal effects in two-phase composites (G. Weng et al., eds.), Micromechanics and Inhomogeneity, Springer-Verlag, New York, 1990, pp. 65-80

[19] M. Milgrom; S. Shtrikman Linear response of two-phase composites with cross moduli: Exact universal relations, Physical Review A, Volume 40 (1989), p. 1568

[20] M. Milgrom; S. Shtrikman Linear response of polycrystals to coupled fields: Exact relations among the coefficients, Physical Review B, Volume 40 (1989), p. 5991

[21] M. Milgrom Some more exact results concerning multifield moduli of two-phase composites, Journal of the Mechanics and Physics of Solids, Volume 45 (1997), pp. 399-404

[22] Y. Benveniste Exact connections between polycrystal and crystal properties in two-dimensional polycrystalline aggregates, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, Volume 447 (1994), p. 1

[23] G.W. Milton Composites: A myriad of microstructure independent relations, Kyoto, Japan, 24–31 August 1996 (T. Tatsumi; E. Wantanabe; T. Kambe, eds.), Elsevier (1996), pp. 443-459

[24] Y. Grabovsky Exact relations for effective tensors of polycrystals. I. Necessary conditions, Archive for Rational Mechanics and Analysis, Volume 143 (1998), pp. 309-329

[25] Y. Grabovsky; D.S. Sage Exact relations for effective tensors of polycrystals. II. Applications to elasticity and piezoelectricity, Archive for Rational Mechanics and Analysis, Volume 143 (1998), pp. 331-356

[26] Y. Grabovsky; G.W. Milton; D.S. Sage Exact relations for effective tensors of composites: Necessary conditions and sufficient conditions, Communications on Pure and Applied Mathematics, Volume 53 (2000), pp. 300-352

[27] H.T. To, Homogenization of dynamic materials, PhD thesis, Department of Mathematics, Temple University, 2004.

[28] K.S. Mendelson A theorem on the conductivity of two-dimensional heterogeneous medium, Journal of Applied Physics, Volume 46 (1975), pp. 4740-4741

[29] G.W. Milton On characterizing the set of possible effective tensors of composites: The variational method and the translation method, Communications on Pure and Applied Mathematics, Volume 43 (1990), pp. 63-125

[30] P. Jordan; J.V. Neumann; E. Wigner On an algebraic generalization of the quantum mechanical formalism, The Annals of Mathematics, Volume 35 (1934), pp. 29-64

[31] M. Hegg, Exact results for effective tensors for fiber-reinforced elastic composites, PhD thesis, Department of Mathematics, Temple University, 2012.

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Characterization of a class of polycrystals whose effective elastic bulk moduli can be exactly determined

Qi-Chang He

C. R. Méca (2003)


Sur les approximations « isotrope » et « anisotrope » de l'opérateur tangent pour les méthodes tangentes incrémentale et affine

Jean-Louis Chaboche; Pascale Kanouté

C. R. Méca (2003)


Modelling of planar interface elastic behaviour: Application to grain boundaries in polycrystals

Lionel Gélébart

C. R. Méca (2010)