Comptes Rendus
Non-symmetric localized fold of a floating sheet
Comptes Rendus. Mécanique, Volume 341 (2013) no. 3, pp. 333-338.

An elastic sheet lying on the surface of a liquid, if axially compressed, shows a transition from a smooth sinusoidal pattern to a well-localized fold. This wrinkle-to-fold transition is a manifestation of a localized buckling. The symmetric and antisymmetric shapes of the fold have recently been described by Diamant and Witten (2011), who found two exact solutions of the nonlinear equilibrium equations. In this Note, we show that these solutions can be generalized to a continuous family of solutions, which yields non-symmetric shapes of the fold. We prove that non-symmetric solutions also describe the shape of a soft strip withdrawn from a liquid bath, a physical problem that allows us to easily observe portions of non-symmetric profiles.

Le flambage dʼune poutre posée à la surface dʼun liquide présente un phénomène de localisation, qui consiste en une transition dʼun état de déformations distribuées et sinusoïdales vers un état avec un pli localisé. Les formes symétriques et antisymétriques du pli ont été récemment décrites par Diamant et Witten (2011), qui ont trouvé une solution exacte des équations non linéaires dʼéquilibre. Dans cette Note, on généralise ces solutions et on montre quʼil existe une famille continue de solutions dʼéquilibre qui donnent des formes de pli généralement non symétriques. On montre que les solutions non symétriques décrivent aussi la forme dʼune lamelle élastique retirée dʼun bain liquide. Cette dernière expérience permet dʼobserver facilement des portions de solutions non symétriques.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2013.01.005
Keywords: Localized buckling, Wrinkle-to-fold transition, Integrable systems
Mot clés : Flambage localisé, Transition rides-pli, Systèmes intégrables

Marco Rivetti 1, 2

1 Université Pierre-et-Marie-Curie, UMR 7190, Institut Jean-Le-Rond-dʼAlembert, 4, place Jussieu, 75252 Paris cedex 05, France
2 CNRS, UMR 7190, Institut Jean-Le-Rond-dʼAlembert, 4, place Jussieu, 75252 Paris cedex 05, France
@article{CRMECA_2013__341_3_333_0,
     author = {Marco Rivetti},
     title = {Non-symmetric localized fold of a floating sheet},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {333--338},
     publisher = {Elsevier},
     volume = {341},
     number = {3},
     year = {2013},
     doi = {10.1016/j.crme.2013.01.005},
     language = {en},
}
TY  - JOUR
AU  - Marco Rivetti
TI  - Non-symmetric localized fold of a floating sheet
JO  - Comptes Rendus. Mécanique
PY  - 2013
SP  - 333
EP  - 338
VL  - 341
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crme.2013.01.005
LA  - en
ID  - CRMECA_2013__341_3_333_0
ER  - 
%0 Journal Article
%A Marco Rivetti
%T Non-symmetric localized fold of a floating sheet
%J Comptes Rendus. Mécanique
%D 2013
%P 333-338
%V 341
%N 3
%I Elsevier
%R 10.1016/j.crme.2013.01.005
%G en
%F CRMECA_2013__341_3_333_0
Marco Rivetti. Non-symmetric localized fold of a floating sheet. Comptes Rendus. Mécanique, Volume 341 (2013) no. 3, pp. 333-338. doi : 10.1016/j.crme.2013.01.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.01.005/

[1] L. Anand; C. Gu Granular materials: constitutive equations and strain localization, J. Mech. Phys. Solids, Volume 48 (2000), pp. 1701-1733

[2] B. Loret; J. Prevost Dynamic strain localization in fluid saturated porous media, J. Eng. Mech., Volume 117 (1991), pp. 907-922

[3] M. Nizette; A. Goriely Towards a classification of Euler–Kirchhoff filaments, J. Math. Phys., Volume 40 (1999), pp. 2830-2866

[4] Z.P. Bazant; G. Pijaudier-Cabot Nonlocal continuum damage, localization instability and convergence, J. Appl. Mech., Volume 55 (1988), pp. 287-290

[5] K. Pham; H. Amor; J.-J. Marigo; C. Maurini Gradient damage models and their use to approximate brittle fracture, Int. J. Damage Mech., Volume 20 (2011), pp. 618-652

[6] E.C. Aifantis On the role of gradients in the localization of deformation and fracture, Int. J. Eng. Sci., Volume 30 (1992), pp. 1279-1299

[7] J. Eggers Nonlinear dynamics and breakup of free-surface flows, Rev. Mod. Phys., Volume 69 (1997), pp. 865-930

[8] M. Ben Amar; Y. Pomeau Crumpled paper, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 453 (1997), pp. 729-755

[9] S.P. Timoshenko Strength of Materials, D. van Nostrand, New York, 1940

[10] G.W. Hunt; H.M. Bolt; J.M.T. Thompson Structural localization phenomena and the dynamical phase-space analogy, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 425 (1989), pp. 245-267

[11] A.R. Champneys; G.W. Hunt; J.M.T. Thompson Localization and solitary waves in solid mechanics, Philos. Trans. R. Soc. Lond. Ser. A, Volume 355 (1997), pp. 2077-2081

[12] F. Brau; H. Vandeparre; A. Sabbah; C. Poulard; A. Boudaoud; P. Damman Multiple-length-scale elastic instability mimics parametric resonance of nonlinear oscillators, Nature Phys., Volume 7 (2011), pp. 56-60

[13] Y. Ebata; A.B. Croll; A.J. Crosby Wrinkling and strain localizations in polymer thin films, Soft Matter, Volume 8 (2012), pp. 9086-9091

[14] B. Li; Y.-P. Cao; X.-Q. Feng; H. Gao Mechanics of morphological instabilities and surface wrinkling in soft materials: a review, Soft Matter, Volume 8 (2012), pp. 5728-5745

[15] M. Wadee; C.D. Coman; A.P. Bassom Solitary wave interaction phenomena in a strut buckling model incorporating restabilisation, Phys. D: Nonlin. Phen., Volume 163 (2002), pp. 26-48

[16] L. Pocivavsek; R. Dellsy; A. Kern; S. Johnson; B. Lin; K.Y.C. Lee; E. Cerda Stress and fold localization in thin elastic membranes, Science, Volume 320 (2008), pp. 912-916

[17] S. Baoukina; L. Monticelli; H.J. Risselada; S.J. Marrink; D.P. Tieleman The molecular mechanism of lipid monolayer collapse, Proc. Natl. Acad. Sci., Volume 105 (2008), pp. 10803-10808

[18] S.-G. Sjölind Visco-elastic buckling analysis of floating ice sheets, Cold Reg. Sci. Technol., Volume 11 (1985), pp. 241-246

[19] T.J.W. Wagner; D. Vella Floating carpets and the delamination of elastic sheets, Phys. Rev. Lett., Volume 107 (2011), p. 044301

[20] B. Audoly Localized buckling of a floating elastica, Phys. Rev. E, Volume 84 (2011), p. 011605

[21] H. Diamant; T.A. Witten Compression induced folding of a sheet: An integrable system, Phys. Rev. Lett., Volume 107 (2011), p. 164302

[22] A.R. Champneys Homoclinic orbits in reversible systems and their applications in mechanics, fluids and optics, Phys. D: Nonlin. Phen., Volume 112 (1998), pp. 158-186

[23] M. Rivetti; A. Antkowiak Elasto-capillary meniscus: Pulling out a soft strip sticking to a liquid surface | arXiv

Cited by Sources:

Comments - Policy