The simplest system where the microscopic physical nature of thermodiffusion can be understood theoretically is a binary mixture. The case of a liquid mixture is considered here, starting from the equilibrium state such as described by thermodynamics. Under a uniform temperature, gradients of composition and/or pressure bring about a non-equilibrium state where local enthalpy is not minimum and/or local entropy is not maximum. The gradients of enthalpy and entropy define a thermodynamic force which is shown to drive composition and pressure diffusions. The thermodynamic force considered in this paper has the physical dimension of a force, it is defined per particle, it is invariant under gauge transformations of enthalpy and entropy and lastly it obeys Newtonʼs third law. Under a non-uniform temperature, it is shown that such a thermodynamic force does not account for thermodiffusion. The thermodiffusive force is of a non-thermodynamic essence. The kinetic-theory account of the transport coefficients is examined in mixtures of long macromolecules with small solvent molecules.
Éric Bringuier 1
@article{CRMECA_2013__341_4-5_365_0, author = {\'Eric Bringuier}, title = {Simple ideas about thermodiffusion in a binary liquid mixture}, journal = {Comptes Rendus. M\'ecanique}, pages = {365--371}, publisher = {Elsevier}, volume = {341}, number = {4-5}, year = {2013}, doi = {10.1016/j.crme.2013.01.010}, language = {en}, }
Éric Bringuier. Simple ideas about thermodiffusion in a binary liquid mixture. Comptes Rendus. Mécanique, Volume 341 (2013) no. 4-5, pp. 365-371. doi : 10.1016/j.crme.2013.01.010. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.01.010/
[1] Diffusion zwischen ungleich erwärmten Orten gleich zusammengesetzter Lösungen, Sitzungsber. k. Akad. Wiss. Math.-Naturw. Kl., Volume XX (1856), p. 539
[2] 150 Jahre Ludwig–Soret Effekt, Bunsen-Magazin, Volume 8 (2006) no. Heft 5, pp. 130-134
[3] Kinetic Theory, vol. 3, Pergamon, Oxford, 1972
[4] Transport properties of a gas mixture, Am. J. Phys., Volume 32 (1964), pp. 742-748
[5] Mathematical Theory of Transport Processes in Gases, North-Holland, Amsterdam, 1972
[6] In memoriam Ludwig Waldmann, Z. Naturforschung A, Volume 58 (2003), pp. 269-274
[7] Thermodiffusion of rigid particles in pure liquids, Physica A, Volume 47 (1986), pp. 1687-1696
[8] Fluid Mechanics, Pergamon, Oxford, 1959 (Chapter 6)
[9] Thermoelectric effects in electrochemical systems, Ind. Eng. Chem. Res., Volume 34 (1995), pp. 3208-3216
[10] Transport of volume in a binary liquid, Physica A, Volume 391 (2012), pp. 5064-5075
[11] Anatomy of particle diffusion, Eur. J. Phys., Volume 50 (2009), pp. 1447-1470
[12] Molecular Theory of Gases and Liquids, Wiley, New York, 1954 (p. 454)
[13] From mechanical motion to Brownian motion, thermodynamics and particle transport theory, Eur. J. Phys., Volume 29 (2008), pp. 1243-1262 (Corrigendum)
[14] A History of Thermodynamics: The Doctrine of Energy and Entropy, Springer, Berlin, 2007
[15] On the development of nonequilibrium thermodynamics, J. Math. Phys., Volume 4 (1963), pp. 147-153
[16] Gauge-invariant approach to thermodiffusion in a liquid binary mixture, Physica A, Volume 390 (2011), pp. 1861-1875
[17] Non-Equilibrium Thermodynamics, North-Holland, Amsterdam, 1962 (pp. 25–27, 273–284)
[18] Statistical mechanics of transport processes. XI. Equations of transport in multicomponent systems, J. Chem. Phys., Volume 28 (1958), pp. 136-145
[19] Statistical Physics, Wiley, New York, 1966 (p. 486)
[20] , Chem. Eng. Sci. (Mass Transfer in Multicomponent Mixtures), Volume 52, VSSD-Delft University Press, Delft, 1997, pp. 861-911
[21] Soret effect in molecular mixtures, Phys. Rev. E, Volume 79 (2009), p. 031204
[22] Chemical Thermodynamics, McGraw–Hill, New York, 1961 (pp. 92–95)
[23] Temperature and concentration dependence of some binary liquid systems, J. Chem. Eng. Data, Volume 20 (1975), pp. 310-316
[24] Theory of thermophoresis. II. Low-density behavior, Phys. Rev. A, Volume 27 (1983), pp. 1616-1634
[25] Thermal diffusion in liquid mixtures and polymer solutions, J. Phys.: Condens. Matter, Volume 16 (2004), p. R357-R379
[26] Thermal diffusion of dilute polymer solutions: The role of chain flexibility and the effective segment size, Macromol., Volume 41 (2008), pp. 6205-6208
[27] Scaling theory of polymer thermodiffusion, Physica A, Volume 389 (2010), pp. 4545-4551
[28] How to separate polydisperse polyelectrolytes by thermal field flow fractionation techniques, Macromol., Volume 16 (1983), pp. 149-150
[29] Driving forces and polymer hydrodynamics in the Soret effect, J. Phys.: Condens. Matter, Volume 24 (2012), p. 195101
[30] Effet Soret des macromolécules flexibles, C. R. Acad. Sci. Paris, Ser. II, Volume 293 (1981), pp. 1025-1027
[31] Connection between thermophoresis and thermodiffusion in a liquid binary mixture, Phil. Mag., Volume 87 (2007), pp. 873-883
[32] Molecular diffusion in polymer solutions, AIChE J., Volume 25 (1979), pp. 1-24
[33] The Theory of Polymer Dynamics, Oxford University Press, Oxford, 1986 (pp. 91–100)
[34] J. Rauch, Diffusion und Thermodiffusion in Polymerlösungen, PhD thesis, University of Bayreuth, 2006, p. 128.
[35] Bermerkungen zu einer Fundamentalgleichung in der kinetischen Gastheorie, Physik. Zeitschrift, Volume XII (1911), pp. 56-60
[36] Physical Kinetics, Pergamon, Oxford, 1981 (Section 11)
Cité par Sources :
Commentaires - Politique