Comptes Rendus
Non-Fickian diffusion affects the relation between the salinity and hydrate capacity profiles in marine sediments
Comptes Rendus. Mécanique, Volume 341 (2013) no. 4-5, pp. 386-392.

On-site measurements of water salinity (which can be directly evaluated from the electrical conductivity) in deep-sea sediments is technically the primary source of indirect information on the capacity of the marine deposits of methane hydrates. We show the relation between the salinity (chlorinity) profile and the hydrate volume in pores to be significantly affected by non-Fickian contributions to the diffusion flux—the thermal diffusion and the gravitational segregation—which have been previously ignored in the literature on the subject and the analysis of surveys data. We provide amended relations and utilize them for an analysis of field measurements for a real hydrate deposit.

Publié le :
DOI : 10.1016/j.crme.2013.01.014
Mots clés : Non-Fickian diffusion, Hydrate deposits, Brine salinity
Denis S. Goldobin 1, 2

1 Institute of Continuous Media Mechanics, UB RAS, 1 Acad. Korolev street, Perm 614013, Russia
2 Department of Mathematics, University of Leicester, University Road, Leicester LE1 7RH, UK
@article{CRMECA_2013__341_4-5_386_0,
     author = {Denis S. Goldobin},
     title = {Non-Fickian diffusion affects the relation between the salinity and hydrate capacity profiles in marine sediments},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {386--392},
     publisher = {Elsevier},
     volume = {341},
     number = {4-5},
     year = {2013},
     doi = {10.1016/j.crme.2013.01.014},
     language = {en},
}
TY  - JOUR
AU  - Denis S. Goldobin
TI  - Non-Fickian diffusion affects the relation between the salinity and hydrate capacity profiles in marine sediments
JO  - Comptes Rendus. Mécanique
PY  - 2013
SP  - 386
EP  - 392
VL  - 341
IS  - 4-5
PB  - Elsevier
DO  - 10.1016/j.crme.2013.01.014
LA  - en
ID  - CRMECA_2013__341_4-5_386_0
ER  - 
%0 Journal Article
%A Denis S. Goldobin
%T Non-Fickian diffusion affects the relation between the salinity and hydrate capacity profiles in marine sediments
%J Comptes Rendus. Mécanique
%D 2013
%P 386-392
%V 341
%N 4-5
%I Elsevier
%R 10.1016/j.crme.2013.01.014
%G en
%F CRMECA_2013__341_4-5_386_0
Denis S. Goldobin. Non-Fickian diffusion affects the relation between the salinity and hydrate capacity profiles in marine sediments. Comptes Rendus. Mécanique, Volume 341 (2013) no. 4-5, pp. 386-392. doi : 10.1016/j.crme.2013.01.014. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.01.014/

[1] M. Maslin et al. Gas hydrates: Past and future geohazard?, Phil. Trans. R. Soc. A, Volume 368 (2010), pp. 2369-2393

[2] J. Maclennan; S.M. Jones; T. Dunkley Jones; et al.; J.P. Kennett; et al.; E.G. Nisbet; C.K. Paull; W. Ussler; W.P. Dillon Is the extent of glaciation limited by marine gas hydrates?, Geophys. Res. Lett. (Methane Hydrates in Quaternary Climate Change: The Clathrate Gun Hypothesis), Volume 245 (2006), pp. 65-80

[3] K.A. Kvenvolden; R.D. McIver Role of naturally occuring gas hydrates in sediment transport, Am. Assoc. Pet. Geol. Bull., Volume 96 (1999), pp. 3420-3426

[4] J.-P. Henriet; J. Mienert; T. Bugge; S. Befring; R.H. Belderson; R.E. Kayen; H.J. Lee Pleistocene slope instability of gas hydrate-laden sediment on the Beaufort sea margin, Mar. Geotechnol., Volume 137 (1998), pp. 191-198

[5] D.S. Goldobin; N.V. Brilliantov; D.S. Goldobin et al. Non-Fickian diffusion and the accumulation of methane bubbles in deep-water sediments, Phys. Rev. E, Volume 84, 2011, p. 056328 | arXiv

[6] D.S. Goldobin Scaling of transport coefficients of porous media under compaction, Europhys. Lett., Volume 95 (2011), p. 64004

[7] M.K. Davie; B.A. Buffett A numerical model for the formation of gas hydrate below the seafloor, J. Geophys. Res., Volume 106 (2001), pp. 497-514

[8] M.K. Davie; B.A. Buffett A steady state model for marine hydrate formation: Constraints on methane supply from pore water sulfate profiles, J. Geophys. Res., Volume 108 (2003), p. 2495

[9] M.K. Davie; B.A. Buffett Sources of methane for marine gas hydrate: Inferences from a comparison of observations and numerical models, Earth Planet. Sci. Lett., Volume 206 (2003), pp. 51-63

[10] D. Archer; S.K. Garg; et al.; R.R. Haacke; G.K. Westbrook; M.S. Riley Controls on the formation and stability of gas hydrate-related bottom-simulating reflectors (BSRs): A case study from the west Svalbard continental slope, J. Geophys. Res., Volume 4 (2007), pp. 521-544

[11] Proceedings of the Ocean Drilling Program (C.K. Paull; R. Matsumoto; P.J. Wallace; W.P. Dillon, eds.), Scientific Results, vol. 164, Ocean Drilling Program, College Station, TX, 2000

[12] C. Ecker; J. Dvorkin; A. Nur Estimating the amount of hydrate and free gas from surface seismic, SEG Tech. Program Expanded Abstracts, Volume 17 (1998), pp. 566-569

[13] S. Circone; S.H. Kirby; L.A. Stern Direct measurement of methane hydrate composition along the hydrate equilibrium boundary, J. Phys. Chem. B, Volume 109 (2005), pp. 9468-9475

[14] R.B. Bird; W.E. Stewart; E.N. Lightfoot Transport Phenomena, Wiley, 2007

[15] F.A. Butt; A. Elverhoi; A. Solheim; C.F. Forsberg Deciphering late lenozoic development of the western Svalbard margin from ODP 986 results, Mar. Geol., Volume 169 (2000), pp. 373-390

[16] D.R. Caldwell; D.R. Caldwell Measurements of negative thermal diffusion coefficients observing onset of thermohaline convection, J. Phys. Chem., Volume 20 (1973), pp. 1029-1039

[17] M.W. Lee Gas hydrates amount estimated from acoustic logs at the Blake Ridge, sites 994, 995, and 997 (C.K. Paull; R. Matsumoto; P.J. Wallace; W.P. Dillon, eds.), Proceedings of the Ocean Drilling Program, Scientific Results, vol. 164, Ocean Drilling Program, College Station, TX, 2000

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Natural gas hydrates: myths, facts and issues

Benoı̂t Beauchamp

C. R. Géos (2004)


Monitoring molecular motion in nano-porous solids

Stéphane Rols; Hervé Jobic; Helmut Schober

C. R. Phys (2007)


A methane fuse for the Cambrian explosion: carbon cycles and true polar wander

Joseph L. Kirschvink; Timothy D. Raub

C. R. Géos (2003)