[Solutions exactes du problème des écoulements instationnaires à surface libre]
Une approche permettant de déterminer des fonctions analytiques dans un secteur angulaire et respectant certaines conditions aux limites est proposée. Si le rapport de lʼangle du secteur au nombre π est rationnel, le problème aux limites est réduit à un système fini dʼéquations différentielles ordinaires. Une telle approche, appliquée au problème du mouvement inertiel dʼun secteur liquide, a permis de sommer la série comportant des petits dénominateurs intervenant dans le problème et de trouver quatre exemples exacts dʼécoulements auto-semblables comportant une surface libre.
Some approach to the solution of boundary value problems for finding functions that are analytical in a wedge is proposed. If the ratio of the angle at the wedge vertex to the number π is rational, then the boundary value problem is reduced to the finite system of ordinary differential equations. Such approach, applied to the problem of inertial motion of a liquid wedge, made it possible to sum the series with small denominators arising in the problem and find four exact examples of self-similar flows with a free boundary.
Accepté le :
Publié le :
Mots-clés : Écoulements limites libres, Petits dénominateurs, Série de pouvoir, Cartographie de conformal
Evgenii Karabut 1
@article{CRMECA_2013__341_6_533_0, author = {Evgenii Karabut}, title = {Exact solutions of the problem of free-boundary unsteady flows}, journal = {Comptes Rendus. M\'ecanique}, pages = {533--537}, publisher = {Elsevier}, volume = {341}, number = {6}, year = {2013}, doi = {10.1016/j.crme.2013.02.009}, language = {en}, }
Evgenii Karabut. Exact solutions of the problem of free-boundary unsteady flows. Comptes Rendus. Mécanique, Volume 341 (2013) no. 6, pp. 533-537. doi : 10.1016/j.crme.2013.02.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.02.009/
[1] General equations and examples, The Problem of the Unstable Flow with a Free Boundary, Nauka, Novosibirsk, 1967, pp. 5-75 (in Russian)
[2] A class of exact, time-dependent, free-surface flows, J. Fluid Mech., Volume 55 (1972) no. 3, pp. 529-543
[3] Small perturbations in the problem of the jet impingement: Constitutive equations, J. Appl. Mech. Tech. Phys., Volume 50 (2009) no. 6, pp. 944-958
- Semi-analytical study of the Voinovs problem, European Journal of Applied Mathematics, Volume 30 (2019) no. 2, p. 298 | DOI:10.1017/s0956792518000098
- Reproduction of solutions in the plane problem on motion of a free-boundary fluid, Doklady Physics, Volume 61 (2016) no. 7, p. 347 | DOI:10.1134/s1028335816070107
- Unsteady flows with a zero acceleration on the free boundary, Doklady Physics, Volume 59 (2014) no. 10, p. 480 | DOI:10.1134/s1028335814100139
- Conformal mapping, Padé approximants, and an example of flow with a significant deformation of the free boundary, European Journal of Applied Mathematics, Volume 25 (2014) no. 6, p. 729 | DOI:10.1017/s0956792514000242
- Unsteady flows with a zero acceleration on the free boundary, Journal of Fluid Mechanics, Volume 754 (2014), p. 308 | DOI:10.1017/jfm.2014.401
Cité par 5 documents. Sources : Crossref
Commentaires - Politique