Comptes Rendus
Tension locking in finite-element analyses of textile composite reinforcement deformation
[Verrouillage en tension lors de lʼanalyse par élément finis des déformations des renforts textiles de composites]
Comptes Rendus. Mécanique, Volume 341 (2013) no. 6, pp. 508-519.

Le comportement mécanique des renforts de composites textiles est caractérisé par une rigidité en tension dans les deux directions de fibres très grande devant celle de cisaillement dans le plan. Les déformations dans le plan de ces matériaux sont principalement obtenues par changement dʼangle entre les réseaux chaîne et trame. Lors dʼune analyse par éléments finis de ces déformations, un phénomène de verrouillage apparaît lorsque le maillage nʼest pas aligné avec les directions des fibres. Dans ce cas, le calcul conduit à des tensions erronées, qui perturbent lʼanalyse de façon majeure. Dans le présent article, ce phénomène est analysé dans le cas de lʼélément fini à quatre nœuds. En particulier, un exemple à deux éléments montre lʼimpossibilité dʼobtenir des solutions sans extensions des fibres pour des maillages quelconques. Une solution à ce problème de verrouillage est proposée pour le quadrangle à quatre nœuds. Elle utilise une intégration réduite et une stabilisation spécifique réduite aux termes de cisaillements plans non constants sur lʼélément.

The mechanical behaviour of textile composite reinforcements is characterised by a tensile stiffness in the two fibre directions, which is very large in comparison with the in-plane shear rigidity. The in-plane deformations of these materials are mainly due to the shear angle between warp and weft yarns. The finite-element analysis of these deformations leads to locking phenomena if the mesh is not aligned with the fibre directions. In this case the calculation gives spurious tensions in the fibres that make the analysis inaccurate. In the present paper, this phenomenon is highlighted and analysed in the case of the four-node finite element. In particular, a two-element example shows the impossibility of obtaining solutions without tensile strains for unaligned meshes. A solution to this tension locking is proposed for the four-node quadrilateral. It is based on a one-point quadrature and a specific stabilisation reduced to non-constant in-plane shear strains.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2013.03.001
Keywords: Composites, Textile reinforcement, Large shear strains, Finite element, Locking, Stabilisation
Mot clés : Composites, Renforts textiles, Grandes déformations de cisaillement, Éléments finis, Verrouillage, Stabilisation

Nahiène Hamila 1 ; Philippe Boisse 1

1 Laboratoire de mécanique des contacts et des structures (LaMCoS), INSA de Lyon, bâtiment J. Jacquard, 69621 Villeurbanne cedex, France
@article{CRMECA_2013__341_6_508_0,
     author = {Nahi\`ene Hamila and Philippe Boisse},
     title = {Tension locking in finite-element analyses of textile composite reinforcement deformation},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {508--519},
     publisher = {Elsevier},
     volume = {341},
     number = {6},
     year = {2013},
     doi = {10.1016/j.crme.2013.03.001},
     language = {en},
}
TY  - JOUR
AU  - Nahiène Hamila
AU  - Philippe Boisse
TI  - Tension locking in finite-element analyses of textile composite reinforcement deformation
JO  - Comptes Rendus. Mécanique
PY  - 2013
SP  - 508
EP  - 519
VL  - 341
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crme.2013.03.001
LA  - en
ID  - CRMECA_2013__341_6_508_0
ER  - 
%0 Journal Article
%A Nahiène Hamila
%A Philippe Boisse
%T Tension locking in finite-element analyses of textile composite reinforcement deformation
%J Comptes Rendus. Mécanique
%D 2013
%P 508-519
%V 341
%N 6
%I Elsevier
%R 10.1016/j.crme.2013.03.001
%G en
%F CRMECA_2013__341_6_508_0
Nahiène Hamila; Philippe Boisse. Tension locking in finite-element analyses of textile composite reinforcement deformation. Comptes Rendus. Mécanique, Volume 341 (2013) no. 6, pp. 508-519. doi : 10.1016/j.crme.2013.03.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.03.001/

[1] Composite Reinforcements for Optimum Performance (P. Boisse, ed.), Woodhead Publishing Limited, 2011, p. 686

[2] J.C. Yong, Composites: Application and assessment of market, in: ICCM18 Conference, Jeju, Korea, 2011.

[3] E.R.H. Fuchs; F.R. Field; R. Roth; R.E. Kirchain Strategic materials selection in the automobile body: Economic opportunities for polymer composite design, Compos. Sci. Technol., Volume 68 (2008), pp. 1989-2002

[4] C. Douthe; O. Baverel; J.F. Caron Form-finding of a grid shell in composite materials, J. Int. Assoc. Shell Spat. Struct., Volume 47 (2006), pp. 53-62

[5] F. Van Der Ween Algorithms for draping fabrics on doubly curved surfaces, Int. J. Numer. Methods Eng., Volume 31 (1991), pp. 1414-1426

[6] A.C. Long; C.D. Rudd A simulation of reinforcement deformation during the production of preform for liquid moulding processes, Proc. Inst. Mech. Eng., B J. Eng. Manuf., Volume 208 (1994), pp. 269-278

[7] P. De Luca; A.K. Pickett Numerical and experimental investigation of some press forming parameters of two fibre reinforced thermoplastics: APC2-AS4 and PEI-CETEX, Composites, Part A, Volume 29 (1998), pp. 101-110

[8] S.W. Hsiao; N. Kikuchi Numerical analysis and optimal design of composite thermoforming process, Comput. Methods Appl. Mech. Eng., Volume 177 (1999), pp. 1-34

[9] N. Hamila; P. Boisse; F. Sabourin; M. Brunet A semi-discrete shell finite element for textile composite reinforcement forming simulation, Int. J. Numer. Methods Eng., Volume 79 (2009), pp. 1443-1466

[10] A.J.M. Spencer Theory of fabric-reinforced viscous fluid, Composites, Part A, Volume 31 (2000), pp. 1311-1321

[11] X. Peng; J. Cao A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics, Composites, Part A, Volume 36 (2005), pp. 859-874

[12] R.H.W. Ten Thije; R. Akkerman; J. Huetink Large deformation simulation of anisotropic material using an updated Lagrangian finite element method, Comput. Methods Appl. Mech. Eng., Volume 196 (2007), pp. 3141-3150

[13] P. Badel; S. Gauthier; E. Vidal-Salle; P. Boisse Rate constitutive equations for computational analyses of textile composite reinforcement mechanical behaviour during forming, Composites, Part A, Volume 40 (2009), pp. 997-1007

[14] X. Yu; L. Ye; Y. Mai Spurious wrinkles in forming simulations of woven fabric, Int. J. Form. Process., Volume 8 (2005), pp. 141-155

[15] X. Yu; B. Cartwright; D. McGuckin; L. Ye; Y.W. Mai Intraply shear locking in finite element analyses of woven fabric forming processes, Composites, Part A, Volume 37 (2006), pp. 790-803

[16] L.R. Hermann Elasticity equations for incompressible and nearly incompressible materials by a variational theorem, AIAA J., Volume 3 (1965), pp. 1896-1900

[17] T. Belytschko; W.E. Bachrach Efficient implementation of quadrilaterals with high coarse-mesh accuracy, Comput. Methods Appl. Mech. Eng., Volume 54 (1986), pp. 279-301

[18] T. Belytschko; P. Bindeman Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems, Comput. Methods Appl. Mech. Eng., Volume 88 (1991), pp. 311-340

[19] T. Belytschko; W.K. Liu; B. Moran Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons Inc., 2000

[20] T.J.R. Hughes; T.E. Tezduyar Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element, J. Appl. Mech., Volume 48 (1981), pp. 587-597

[21] E.N. Dvorkin; K.J. Bathe A continuum mechanics based four-node shell element for general nonlinear analysis, Eng. Comput., Volume 1 (1984), pp. 77-88

[22] P. Boisse; J.L. Daniel; J.C. Gelin A C0 three node shell element for non-linear analysis, Int. J. Numer. Methods Eng., Volume 37 (1994), pp. 2339-2364

[23] H. Stolarski; T. Belytschko Membrane locking and reduced integration for curved elements, J. Appl. Mech., Volume 49 (1982), pp. 172-177

[24] H. Stolarski; T. Belytschko Shear and membrane locking in curved C0 elements, Comput. Methods Appl. Mech. Eng., Volume 41 (1983), pp. 279-296

[25] Q. Zeng; A. Combescure A new one-point quadrature, general non-linear quadrilateral shell element with physical stabilization, Int. J. Numer. Methods Eng., Volume 42 (1998), pp. 1307-1338

[26] R.H.W. ten Thije; R. Akkerman Solutions to intra-ply shear locking in finite element analyses of fibre reinforced materials, Composites, Part A, Volume 39 (2008), pp. 1167-1176

[27] D. Durville Simulation of the mechanical behaviour of woven fabrics at the scale of fibers, Int. J. Mater. Forming, Volume 3 (2010), pp. 1241-1251

[28] A.K. Pickett; G. Creech; P. de Luca Simplified and advanced simulation methods for prediction of fabric draping, Eur. J. Comput. Mech., Volume 14 (2005), pp. 677-691

[29] D.F. Flanagan; T. Belytschko A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, Comput. Methods Appl. Mech. Eng., Volume 17 (1981), pp. 679-706

[30] J. Cao; R. Akkerman; P. Boisse et al. Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results, Composites, Part A, Volume 39 (2008), pp. 1037-1053

[31] N. Hamila; P. Boisse A meso–macro three node finite element for draping of textile composite preforms, Appl. Compos. Mater., Volume 14 (2007), pp. 235-250

Cité par Sources :

Commentaires - Politique