A new fractional relaxation operator is derived using the methodology of fractional calculus. The governing coupled fractional differential equations in the frame of the thermo-viscoelasticity with fractional order heat transfer are applied to the one-dimensional problem with heat sources. Laplace transform and state space techniques are used to get the solution. According to the numerical results and its graphs, conclusion about the new theory of thermo-viscoelasticity has been constructed. The theories of coupled thermo-viscoelasticity and of generalized thermo-viscoelasticity with one relaxation time follow as limit cases.
Accepté le :
Publié le :
Magdy A. Ezzat 1 ; Ahmed S. El-Karamany 2 ; Alaa A. El-Bary 3 ; Mohsen A. Fayik 1
@article{CRMECA_2013__341_7_553_0, author = {Magdy A. Ezzat and Ahmed S. El-Karamany and Alaa A. El-Bary and Mohsen A. Fayik}, title = {Fractional calculus in one-dimensional isotropic thermo-viscoelasticity}, journal = {Comptes Rendus. M\'ecanique}, pages = {553--566}, publisher = {Elsevier}, volume = {341}, number = {7}, year = {2013}, doi = {10.1016/j.crme.2013.04.001}, language = {en}, }
TY - JOUR AU - Magdy A. Ezzat AU - Ahmed S. El-Karamany AU - Alaa A. El-Bary AU - Mohsen A. Fayik TI - Fractional calculus in one-dimensional isotropic thermo-viscoelasticity JO - Comptes Rendus. Mécanique PY - 2013 SP - 553 EP - 566 VL - 341 IS - 7 PB - Elsevier DO - 10.1016/j.crme.2013.04.001 LA - en ID - CRMECA_2013__341_7_553_0 ER -
%0 Journal Article %A Magdy A. Ezzat %A Ahmed S. El-Karamany %A Alaa A. El-Bary %A Mohsen A. Fayik %T Fractional calculus in one-dimensional isotropic thermo-viscoelasticity %J Comptes Rendus. Mécanique %D 2013 %P 553-566 %V 341 %N 7 %I Elsevier %R 10.1016/j.crme.2013.04.001 %G en %F CRMECA_2013__341_7_553_0
Magdy A. Ezzat; Ahmed S. El-Karamany; Alaa A. El-Bary; Mohsen A. Fayik. Fractional calculus in one-dimensional isotropic thermo-viscoelasticity. Comptes Rendus. Mécanique, Volume 341 (2013) no. 7, pp. 553-566. doi : 10.1016/j.crme.2013.04.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.04.001/
[1] Effect of rheological behavior on thermal stresses, J. Appl. Phys., Volume 25 (1954), pp. 1110-1117
[2] Foundation of Solid Mechanics, Prentice–Hall, Englewood Cliffs, NJ, 1980
[3] Mathematical Structure of the Theories of Viscoelasticity, Hermann, Paris, 1953
[4] , Die Physik der Hochpolymeren, vol. 4, Springer-Verlag, 1956 (Chap. 1)
(H.A. Stuart, ed.)[5] , Rheology: Theory and Applications, vol. 1, Academic Press, New York, 1956
(F.R. Erich, ed.)[6] Viscoelastic Properties of Polymers, J. Wiley and Sons, New York, 1970
[7] Fundamentals of the Mathematical Theory of Thermal Visco-Elasticity, Nauka, Moscow, 1970
[8] Coupled problems in continuum mechanics, J. Durability Plasticity, Volume 2 (1984), pp. 224-253
[9] Theory of Viscoelasticity. An Introduction, Academic Press, London, 1982
[10] Sur une forme de lʼéquation de la chaleur éliminant le paradoxe dʼune propagation instantanée, C. R. Acad. Sci. Paris, Volume 247 (1958), pp. 431-433
[11] A generalized dynamical theory of thermo-elasticity, J. Mech. Phys. Solids, Volume 15 (1967), pp. 299-309
[12] Generalized thermoelasticity for anisotropic media, Quart. Appl. Math., Volume 33 (1980), pp. 1-8
[13] Generalized thermoelasticity and its applications (R.B. Hetnarski, ed.), Thermal Stresses, vol. III, Elsevier, New York, 1989, pp. 279-354
[14] Hyperbolic thermoelasticity. A review of recent literature, Appl. Mech. Rev., Volume 51 (1998), pp. 705-729
[15] Nonclassical dynamical thermoelasticity, Int. J. Solids Struct., Volume 37 (2000), pp. 215-224
[16] Thermoelasticity with Finite Wave Speeds, Oxford University Press, 2009
[17] Thermal shock problem in generalized thermo-viscoelasticity under four theories, Int. J. Eng. Sci., Volume 42 (2004), pp. 649-671
[18] State space approach to generalized thermo-viscoelasticity with two relaxation times, Int. J. Eng. Sci., Volume 40 (2002), pp. 283-302
[19] On uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with thermal relaxation, Can. J. Phys., Volume 81 (2003), pp. 823-833
[20] Discontinuities in generalized thermo-viscoelasticity under four theories, J. Therm. Stress., Volume 27 (2004), pp. 1187-1212
[21] On the boundary integral formulation of thermo-viscoelasticity theory, Int. J. Eng. Sci., Volume 40 (2002), pp. 1943-1956
[22] Uniqueness and reciprocal theorems in linear micropolar electro-magnetic thermoelasticity with two relaxation times, Mech. Time-Depend. Mater., Volume 13 (2009), pp. 93-115
[23] The relaxation effects of the volume properties of electrically conducting viscoelastic material, Sci. Eng., B, Solid-State Mater. Adv. Technol., Volume 130 (2006), pp. 11-23
[24] Fractional Calculus: Integral and Differential Equations of Fractional Orders, Fractals and Fractional Calculus in Continuum Mechanics, Springer, Wien, 1997
[25] An Introduction to the Fractional Integrals and Derivatives Theory and Applications, John Wiley & Sons Inc., New York, 1993
[26] Fractional Integrals and Derivatives Theory and Applications, Gordon & Breach, Longhorne, PA, 1993
[27] The Fractional Calculus, Academic Press, New York, 1974
[28] Linear models of dissipation in anelastic solids, Riv. Nuovo Cimento (Ser. II), Volume 1 (1971), pp. 161-198
[29] Applications of fractional calculus to the theory of viscoelasticity, Trans. ASME J. Appl. Mech., Volume 51 (1984), pp. 299-307
[30] On the fractional calculus model of viscoelastic behavior, J. Rheol., Volume 30 (1986), pp. 133-155
[31] Applications of fractional calculus to dynamic problems of linear and nonlinear heredity mechanics of solids, Appl. Mech. Rev., Volume 50 (1967), pp. 15-67
[32] Bioimpedance and Bioelectricity Basics, Academic Press, San Diego, CA, 2000
[33] Viscoelastic Solids, CRC Press, Boca Raton, FL, 1999
[34] A method for the numerical inversion of the Laplace transform, J. Comput. Appl. Math., Volume 10 (1984), pp. 113-132
[35] Time-fractional derivatives in relaxation processes: a tutorial survey, Fract. Calc. Appl. Anal., Volume 10 (2007), pp. 283-299
[36] Fractional Differential Equations, Academic Press, New York, 1999
[37] Fractional heat conductive and associated thermal stress, J. Therm. Stress., Volume 28 (2005), pp. 83-102
[38] Fractional radial heat conduction in an infinite medium with a cylindrical cavity and associated thermal stresses, Mech. Res. Comm., Volume 37 (2010), pp. 436-440
[39] Fractional order theory of thermoelasticity, Int. J. Solids Struct., Volume 47 (2010), pp. 269-275
[40] Theory of fractional order generalized thermoelasticity, J. Heat Transfer, Volume 132 (2010), pp. 1-7
[41] Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer, Physica B, Volume 405 (2010), pp. 4188-4194
[42] Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer, Physica B, Volume 406 (2011), pp. 30-35
[43] Derivation and solutions of some fractional Black–Scholes equations in coarse-grained space and time, application to Mertonʼs optimal portfolio, Comput. Math. Appl., Volume 59 (2010), pp. 1142-1164
[44] Convolutional variational principle, reciprocal and uniqueness theorems in linear fractional two-temperature thermoelasticity, J. Therm. Stress., Volume 34 (2011), pp. 264-284
[45] Fractional order theory of a perfect conducting thermoelastic medium, Can. J. Phys., Volume 89 (2011), pp. 311-318
[46] Fractional order heat conduction law in magneto-thermoelasticity involving two temperatures, Z. Angew. Math. Phys., Volume 62 (2011), pp. 937-952
[47] State space approach to thermoelasticity, J. Therm. Stress., Volume 1 (1978), pp. 135-145
[48] State space approach to solids and fluids, Can. J. Phys. Rev., Volume 86 (2008), pp. 1241-1250
[49] Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solitons Fractals, Volume 7 (1996), pp. 1461-1477
[50] Introduction to the Theory and Application of the Laplace Transformation, Springer, Berlin, 1974
[51] On Mittag-Leffler-type function in fractional evolution processes, J. Comput. Appl. Math., Volume 118 (2000), pp. 283-299
[52] Fractional calculus: some basic problems in continuum and statistical mechanics (Carpinteri; F. Mainardi, eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, Wien, New York, 1997, pp. 291-348
[53] Higher Transcendental Functions, Bateman Project, vol. 3, McGraw-Hill, New York, 1955 (Chap. 18)
[54] Linear models of dissipation whose Q is almost frequency independent II, Geophys. J. R. Astron. Soc., Volume 13 (1967), pp. 529-539
[55] Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., Volume 27 (1956), pp. 240-253
[56] State space formulation to generalized thermoviscoelasticity with thermal relaxation, J. Therm. Stress., Volume 24 (2001), pp. 823-846
[57] Generalized thermo-viscoelastic plane waves with two relaxation times, Int. J. Eng. Sci., Volume 40 (2002), pp. 1329-1347
Cité par Sources :
Commentaires - Politique